Satellites reveal hotspots of global river extent change

Qianhan Wu, Linghong Ke, Jida Wang, Tamlin M. Pavelsky, George H. Allen, Yongwei Sheng, Xuejun Duan, Yunqiang Zhu, Jin Wu, Lei Wang, Kai Liu, Tan Chen, Wensong Zhang, Chenyu Fan, Bin Yong, Chunqiao Song

Research output: Contribution to journalArticlepeer-review

Abstract

Rivers are among the most diverse, dynamic, and productive ecosystems on Earth. River flow regimes are constantly changing, but characterizing and understanding such changes have been challenging from a long-term and global perspective. By analyzing water extent variations observed from four-decade Landsat imagery, we here provide a global attribution of the recent changes in river regime to morphological dynamics (e.g., channel shifting and anabranching), expansion induced by new dams, and hydrological signals of widening and narrowing. Morphological dynamics prevailed in ~20% of the global river area. Booming reservoir constructions, mostly skewed in Asia and South America, contributed to ~32% of the river widening. The remaining hydrological signals were characterized by contrasting hotspots, including prominent river widening in alpine and pan-Arctic regions and narrowing in the arid/semi-arid continental interiors, driven by varying trends in climate forcing, cryospheric response to warming, and human water management. Our findings suggest that the recent river extent dynamics diverge based on hydroclimate and socio-economic conditions, and besides reflecting ongoing morphodynamical processes, river extent changes show close connections with external forcings, including climate change and anthropogenic interference.

Original languageEnglish (US)
Article number1587
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Satellites reveal hotspots of global river extent change'. Together they form a unique fingerprint.

Cite this