Sampling-based nonholonomic motion planning in belief space via Dynamic Feedback Linearization-based FIRM

Ali Akbar Agha-Mohammadi, Suman Chakravorty, Nancy M. Amato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In roadmap-based methods, such as the Probabilistic Roadmap Method (PRM) in deterministic environments or the Feedback-based Information RoadMap (FIRM) in partially observable probabilistic environments, a stabilizing controller is needed to guarantee node reachability in state or belief space. In belief space, it has been shown that belief-node reachability can be achieved using stationary Linear Quadratic Gaussian (LQG) controllers, for linearly controllable systems. However, for nonholonomic systems such as a unicycle model, belief reachability is a challenge. In this paper, we construct a roadmap in information space, where the local planners in partially-observable space are constructed by utilizing a Kalman filter as an estimator along with a Dynamic Feedback Linearization-based (DFL-based) controller as the belief controller. As a consequence, the task of belief stabilization to pre-defined nodes in belief space is accomplished even for nonholonomic systems. Therefore, a query-independent roadmap is generated in belief space that preserves the 'principle of optimality', required in dynamic programming solvers. This method serves as an offline POMDP solver for motion planning in belief space, which can seamlessly take obstacles into account. Experimental results show the efficiency of both individual local planners and the overall planner over the information graph for a nonholonomic model.

Original languageEnglish (US)
Title of host publication2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
Pages4433-4440
Number of pages8
DOIs
StatePublished - 2012
Externally publishedYes
Event25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 - Vilamoura, Algarve, Portugal
Duration: Oct 7 2012Oct 12 2012

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
CountryPortugal
CityVilamoura, Algarve
Period10/7/1210/12/12

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Sampling-based nonholonomic motion planning in belief space via Dynamic Feedback Linearization-based FIRM'. Together they form a unique fingerprint.

Cite this