SafeDrug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug Combinations

Chaoqi Yang, Cao Xiao, Fenglong Ma, Lucas Glass, Jimeng Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Medication recommendation is an essential task of AI for healthcare. Existing works focused on recommending drug combinations for patients with complex health conditions solely based on their electronic health records. Thus, they have the following limitations: (1) some important data such as drug molecule structures have not been utilized in the recommendation process. (2) drug-drug interactions (DDI) are modeled implicitly, which can lead to sub-optimal results. To address these limitations, we propose a DDI-controllable drug recommendation model named SafeDrug to leverage drugs' molecule structures and model DDIs explicitly. SafeDrug is equipped with a global message passing neural network (MPNN) module and a local bipartite learning module to fully encode the connectivity and functionality of drug molecules. SafeDrug also has a controllable loss function to control DDI level in the recommended drug combinations effectively. On a benchmark dataset, our SafeDrug is relatively shown to reduce DDI by 19.43% and improves 2.88% on Jaccard similarity between recommended and actually prescribed drug combinations over previous approaches. Moreover, SafeDrug also requires much fewer parameters than previous deep learning based approaches, leading to faster training by about 14% and around 2× speed-up in inference.

Original languageEnglish (US)
Title of host publicationProceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
EditorsZhi-Hua Zhou
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3735-3741
Number of pages7
ISBN (Electronic)9780999241196
DOIs
StatePublished - 2021
Event30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada
Duration: Aug 19 2021Aug 27 2021

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Country/TerritoryCanada
CityVirtual, Online
Period8/19/218/27/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'SafeDrug: Dual Molecular Graph Encoders for Recommending Effective and Safe Drug Combinations'. Together they form a unique fingerprint.

Cite this