TY - GEN
T1 - Safe element screening for submodular function minimization
AU - Zhang, Weizhong
AU - Hong, Bin
AU - Ma, Lin
AU - Liu, Wei
AU - Zhang, Tong
N1 - Publisher Copyright:
© Copyright 2018 by the author(s). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Submodular functions are discrete analogs of convex functions, which have applications in various fields, including machine learning and computer vision. However, in large-scale applications, solving Submodular Function Minimization (SFM) problems remains challenging. In this paper, we make the first attempt to extend the emerging technique named screening in large-scale sparse learning to SFM for accelerating its optimization process. We first conduct a careful studying of the relationships between SFM and the corresponding convex proximal problems, as well as the accurate primal optimum estimation of the proximal problems. Relying on this study, we subsequently propose a novel safe screening method to quickly identify the elements guaranteed to be included (we refer to them as active) or excluded (inactive) in the final optimal solution of SFM during the optimization process. By removing the inactive elements and fixing the active ones, the problem size can be dramatically reduced, leading to great savings in the computational cost without sacrificing any accuracy. To the best of our knowledge, the proposed method is the first screening method in the fields of SFM and even combinatorial optimization, thus pointing out a new direction for accelerating SFM algorithms. Experiment results on both synthetic and real datasets demonstrate the significant speedups gained by our approach.
AB - Submodular functions are discrete analogs of convex functions, which have applications in various fields, including machine learning and computer vision. However, in large-scale applications, solving Submodular Function Minimization (SFM) problems remains challenging. In this paper, we make the first attempt to extend the emerging technique named screening in large-scale sparse learning to SFM for accelerating its optimization process. We first conduct a careful studying of the relationships between SFM and the corresponding convex proximal problems, as well as the accurate primal optimum estimation of the proximal problems. Relying on this study, we subsequently propose a novel safe screening method to quickly identify the elements guaranteed to be included (we refer to them as active) or excluded (inactive) in the final optimal solution of SFM during the optimization process. By removing the inactive elements and fixing the active ones, the problem size can be dramatically reduced, leading to great savings in the computational cost without sacrificing any accuracy. To the best of our knowledge, the proposed method is the first screening method in the fields of SFM and even combinatorial optimization, thus pointing out a new direction for accelerating SFM algorithms. Experiment results on both synthetic and real datasets demonstrate the significant speedups gained by our approach.
UR - https://www.scopus.com/pages/publications/85057275116
UR - https://www.scopus.com/inward/citedby.url?scp=85057275116&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85057275116
T3 - 35th International Conference on Machine Learning, ICML 2018
SP - 9211
EP - 9220
BT - 35th International Conference on Machine Learning, ICML 2018
A2 - Krause, Andreas
A2 - Dy, Jennifer
PB - International Machine Learning Society (IMLS)
T2 - 35th International Conference on Machine Learning, ICML 2018
Y2 - 10 July 2018 through 15 July 2018
ER -