Rovibrational grouping for N2(1Σg+)-N2(1Σg+) energy transfer using state-to-state model

Robyn Macdonald, Alessandro Munafò, Marco Panesi

Research output: Chapter in Book/Report/Conference proceedingConference contribution


The present work discusses the development of a reduced-order model to describe N2(1Σg+)-N(4Su) and N2(1Σg+)-N2(1Σg+) inelastic and reactive interactions. Following the main ideas of previous works by the authors and coworkers, the kinetic mechanism reduction is realized by lumping the rovibrational states of N2(1Σg+) in energy groups. However, owing to the large number of channels in N2(1Σg+)-N2(1Σg+) collisions, the grouped rate coefficients are now evaluated when performing QCT calculations. This innovative approach avoids the explicit storage of the whole set of elementary rate coefficients, leading to large savings in terms of both memory and CPU time. The effectiveness of the proposed methodology is first verified by comparing the grouped rate coefficients for the N2 (1Σg+)-N(4Su) system with those obtained directly from the rovibrational State-to-State data (which are in this case available). As a second verification step, the macroscopic dissociation rate coefficient in N2(1Σg+)-N2(1Σg+) collisions is evaluated and compared with the predictions obtained in the past years, and with the calculations by other research groups. The proposed reduced-order model is finally applied to a constant temperature heat-bath simulation where the results are compared with those of conventional multi-temperature models (e.g. Park).

Original languageEnglish (US)
Title of host publication46th AIAA Thermophysics Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624104350
StatePublished - 2016
Event46th AIAA Thermophysics Conference, 2016 - Washington, United States
Duration: Jun 13 2016Jun 17 2016

Publication series

Name46th AIAA Thermophysics Conference


Other46th AIAA Thermophysics Conference, 2016
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering


Dive into the research topics of 'Rovibrational grouping for N2(1Σg+)-N2(1Σg+) energy transfer using state-to-state model'. Together they form a unique fingerprint.

Cite this