TY - JOUR
T1 - Routine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips
AU - Park, Keunhan
AU - Lee, Jungchul
AU - Bhargava, Rohit
AU - King, William P.
PY - 2008/5/1
Y1 - 2008/5/1
N2 - Simultaneous structural and chemical characterization of materials at the nanoscale is both an immediate need and an ongoing challenge. This article reports a route to address this need, which can be rapidly adopted by practitioners, by combining the benefits of widely available scanning probe microscopy and vibrational microspectrometry. In an atomic force microscope (AFM), the probe tip can provide a nanoscale topographic image. Here, we use a temperature-controlled probe tip to selectively acquire an analyte from a specified location and determine its mass in a thermogravimetric manner. The tip is then analyzed via complementary Raman and Fourier transform infrared microspectrometers, providing a molecular characterization of samples down to the femtogram level in minutes. The probe can be self-cleaned and employed for repeated use by rapidly heating it to vaporize the analyte. By combining the established analytical modalities of AFM and vibrational spectrometry, a complete physical and molecular characterization of nanoscale domains is possible: mass determination is facile, thermal analyses can be integrated on the probe, and the obtained spectral data can be related to existing knowledge bases.
AB - Simultaneous structural and chemical characterization of materials at the nanoscale is both an immediate need and an ongoing challenge. This article reports a route to address this need, which can be rapidly adopted by practitioners, by combining the benefits of widely available scanning probe microscopy and vibrational microspectrometry. In an atomic force microscope (AFM), the probe tip can provide a nanoscale topographic image. Here, we use a temperature-controlled probe tip to selectively acquire an analyte from a specified location and determine its mass in a thermogravimetric manner. The tip is then analyzed via complementary Raman and Fourier transform infrared microspectrometers, providing a molecular characterization of samples down to the femtogram level in minutes. The probe can be self-cleaned and employed for repeated use by rapidly heating it to vaporize the analyte. By combining the established analytical modalities of AFM and vibrational spectrometry, a complete physical and molecular characterization of nanoscale domains is possible: mass determination is facile, thermal analyses can be integrated on the probe, and the obtained spectral data can be related to existing knowledge bases.
UR - http://www.scopus.com/inward/record.url?scp=42949090392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=42949090392&partnerID=8YFLogxK
U2 - 10.1021/ac702423c
DO - 10.1021/ac702423c
M3 - Article
C2 - 18366192
AN - SCOPUS:42949090392
SN - 0003-2700
VL - 80
SP - 3221
EP - 3228
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 9
ER -