TY - GEN
T1 - Round-Optimal Black-Box Protocol Compilers
AU - Ishai, Yuval
AU - Khurana, Dakshita
AU - Sahai, Amit
AU - Srinivasan, Akshayaram
N1 - Funding Information:
Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. D. Khurana was supported in part by DARPA SIEVE award, a gift from Visa Research, and a C3AI DTI award. A. Sahai was supported in part from a Simons Investigator Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024. A. Srinivasan was supported in part by the SERB startup grant.
Publisher Copyright:
© 2022, International Association for Cryptologic Research.
PY - 2022
Y1 - 2022
N2 - We give black-box, round-optimal protocol compilers from semi-honest security to malicious security in the Random Oracle Model (ROM) and in the 1-out-of-2 OT correlations model. We use our compilers to obtain the following results: A two-round, two-party protocol secure against malicious adversaries in the random oracle model making black-box use of a two-round semi-honest secure protocol. Prior to our work, such a result was not known even considering special functionalities such as a two-round oblivious transfer. This result also implies the first constructions of two-round malicious (batch) OT/OLE in the random oracle model based on the black-box use of two-round semi-honest (batch) OT/OLE.A three-round multiparty secure computation protocol in the random oracle model secure against malicious adversaries that is based on the black-box use of two-round semi-honest OT. This protocol matches a known round complexity lower bound due to Applebaum et al. (ITCS’20) and is based on a minimal cryptographic hardness assumption.A two-round, multiparty secure computation protocol in the 1-out-of-2 OT correlations model that is secure against malicious adversaries and makes black-box use of cryptography. This gives new round-optimal protocols for computing arithmetic branching programs that are statistically secure and makes black-box use of the underlying field. As a contribution of independent interest, we provide a new variant of the IPS compiler (Ishai, Prabhakaran and Sahai, Crypto 2008) in the two-round setting, where we relax requirements on the IPS “inner protocol” by strengthening the “outer protocol”.
AB - We give black-box, round-optimal protocol compilers from semi-honest security to malicious security in the Random Oracle Model (ROM) and in the 1-out-of-2 OT correlations model. We use our compilers to obtain the following results: A two-round, two-party protocol secure against malicious adversaries in the random oracle model making black-box use of a two-round semi-honest secure protocol. Prior to our work, such a result was not known even considering special functionalities such as a two-round oblivious transfer. This result also implies the first constructions of two-round malicious (batch) OT/OLE in the random oracle model based on the black-box use of two-round semi-honest (batch) OT/OLE.A three-round multiparty secure computation protocol in the random oracle model secure against malicious adversaries that is based on the black-box use of two-round semi-honest OT. This protocol matches a known round complexity lower bound due to Applebaum et al. (ITCS’20) and is based on a minimal cryptographic hardness assumption.A two-round, multiparty secure computation protocol in the 1-out-of-2 OT correlations model that is secure against malicious adversaries and makes black-box use of cryptography. This gives new round-optimal protocols for computing arithmetic branching programs that are statistically secure and makes black-box use of the underlying field. As a contribution of independent interest, we provide a new variant of the IPS compiler (Ishai, Prabhakaran and Sahai, Crypto 2008) in the two-round setting, where we relax requirements on the IPS “inner protocol” by strengthening the “outer protocol”.
UR - http://www.scopus.com/inward/record.url?scp=85131945358&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131945358&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-06944-4_8
DO - 10.1007/978-3-031-06944-4_8
M3 - Conference contribution
AN - SCOPUS:85131945358
SN - 9783031069437
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 210
EP - 240
BT - Advances in Cryptology – EUROCRYPT 2022 - 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2022, Proceedings
A2 - Dunkelman, Orr
A2 - Dziembowski, Stefan
PB - Springer
T2 - 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2022
Y2 - 30 May 2022 through 3 June 2022
ER -