TY - JOUR
T1 - Role of sortilin 1 (SORT1) on lipid metabolism in bovine liver
AU - Yang, Wei
AU - Wang, Shuang
AU - Loor, Juan J.
AU - Jiang, Qianming
AU - Gao, Changhong
AU - Yang, Mingmao
AU - Tian, Yan
AU - Fan, Wenwen
AU - Zhao, Yingying
AU - Zhang, Bingbing
AU - Xu, Chuang
N1 - This work was supported by Chinese National Natural Science Foundation (U20A2062 and 32125038), Post-doctoral Startup Foundation in Heilongjiang (2020-51), and Young Innovative Talents Training Program of Ordinary Undergraduate Universities in Heilongjiang Province (No. UNPYSCT-2018081; Daqing, China). The authors have not stated any conflicts of interest.
PY - 2022/6
Y1 - 2022/6
N2 - High circulating concentrations of fatty acids cause triacylglycerol (TAG) accumulation in hepatocytes of dairy cows, a common metabolic disorder after calving. Low secretion of apolipoprotein B (APOB) and very low density lipoprotein (VLDL) are thought to be the major factors for TAG accumulation in hepatocytes. Recent data in nonruminant models revealed that sortilin 1 (SORT1) is a key regulator of VLDL secretion in part due to its ability to bind APOB. Thus, SORT1 could play a role in the susceptibility of dairy cows to develop fatty liver. To gain mechanistic insights in vivo and in vitro, we performed experiments using liver biopsies or isolated primary hepatocytes. For the in vivo study, blood and liver samples were collected from healthy multiparous dairy cows (n = 6; 9.0 ± 2.1 d in milk) and cows with fatty liver (n = 6; 9.7 ± 2.2 d in milk). In vitro, hepatocytes isolated from 4 healthy female calves (1 d old, 42–51 kg) were challenged with (fatty acids) or without (control) a 1.2 mM mixture of fatty acids in an attempt to induce metabolic stress. Furthermore, hepatocytes were treated with empty adenovirus vectors (Ad-GFP) or SORT1 overexpressing adenovirus (Ad-SORT1) for 6 h, or SORT1 inhibitor for 2 h followed by a challenge with (Ad-GFP + fatty acids, Ad-SORT1 + fatty acids, or SORT1 inhibitor + fatty acids) or without (Ad-GFP, Ad-SORT1, or SORT1 inhibitor) the 1.2 mM mixture of fatty acids for 12 h. Data from liver biopsies were compared using a 2-tailed unpaired Student's t-test. Data from calf hepatocytes were analyzed by one-way ANOVA. Data revealed that both fatty liver and in vitro challenge with fatty acids were associated with greater concentrations of TAG and mRNA and protein abundance of SORT1, SREBF1, FASN, and ACACA. In contrast, mRNA and protein abundance of CPT1A and APOB, and mRNA abundance of MTTP were markedly lower. Compared with fatty acid challenge alone, SORT1 overexpression led to greater concentration of TAG and mRNA abundance of SREBF1, FASN, ACACA, DGAT1, and DGAT2, and protein abundance of SREBF1, FASN, and ACACA. In contrast, concentration of secreted VLDL-APOB and mRNA abundance of APOB and MTTP, and protein abundance of CPT1A, APOB, and MTTP were lower. Compared with fatty acid challenge alone, SORT1 inhibitor + fatty acids led to lower concentrations of TAG and mRNA abundance of SREBF1, FASN, and DGAT2, and protein abundance of FASN, ACACA, and DGAT1. Concentrations of secreted VLDL-APOB and mRNA abundance of CPT1A and protein abundance of CPT1A and APOB were greater. Overall, in vitro data suggested that greater SORT1 abundance induced by exogenous fatty acids caused a reduction in VLDL-APOB secretion and increased hepatocyte TAG synthesis. Such mechanism was also apparent in tissue from cows with fatty liver. Thus, targeted downregulation of hepatic SORT1 could represent a viable mechanism to unload lipid during conditions where the influx of fatty acids increases markedly.
AB - High circulating concentrations of fatty acids cause triacylglycerol (TAG) accumulation in hepatocytes of dairy cows, a common metabolic disorder after calving. Low secretion of apolipoprotein B (APOB) and very low density lipoprotein (VLDL) are thought to be the major factors for TAG accumulation in hepatocytes. Recent data in nonruminant models revealed that sortilin 1 (SORT1) is a key regulator of VLDL secretion in part due to its ability to bind APOB. Thus, SORT1 could play a role in the susceptibility of dairy cows to develop fatty liver. To gain mechanistic insights in vivo and in vitro, we performed experiments using liver biopsies or isolated primary hepatocytes. For the in vivo study, blood and liver samples were collected from healthy multiparous dairy cows (n = 6; 9.0 ± 2.1 d in milk) and cows with fatty liver (n = 6; 9.7 ± 2.2 d in milk). In vitro, hepatocytes isolated from 4 healthy female calves (1 d old, 42–51 kg) were challenged with (fatty acids) or without (control) a 1.2 mM mixture of fatty acids in an attempt to induce metabolic stress. Furthermore, hepatocytes were treated with empty adenovirus vectors (Ad-GFP) or SORT1 overexpressing adenovirus (Ad-SORT1) for 6 h, or SORT1 inhibitor for 2 h followed by a challenge with (Ad-GFP + fatty acids, Ad-SORT1 + fatty acids, or SORT1 inhibitor + fatty acids) or without (Ad-GFP, Ad-SORT1, or SORT1 inhibitor) the 1.2 mM mixture of fatty acids for 12 h. Data from liver biopsies were compared using a 2-tailed unpaired Student's t-test. Data from calf hepatocytes were analyzed by one-way ANOVA. Data revealed that both fatty liver and in vitro challenge with fatty acids were associated with greater concentrations of TAG and mRNA and protein abundance of SORT1, SREBF1, FASN, and ACACA. In contrast, mRNA and protein abundance of CPT1A and APOB, and mRNA abundance of MTTP were markedly lower. Compared with fatty acid challenge alone, SORT1 overexpression led to greater concentration of TAG and mRNA abundance of SREBF1, FASN, ACACA, DGAT1, and DGAT2, and protein abundance of SREBF1, FASN, and ACACA. In contrast, concentration of secreted VLDL-APOB and mRNA abundance of APOB and MTTP, and protein abundance of CPT1A, APOB, and MTTP were lower. Compared with fatty acid challenge alone, SORT1 inhibitor + fatty acids led to lower concentrations of TAG and mRNA abundance of SREBF1, FASN, and DGAT2, and protein abundance of FASN, ACACA, and DGAT1. Concentrations of secreted VLDL-APOB and mRNA abundance of CPT1A and protein abundance of CPT1A and APOB were greater. Overall, in vitro data suggested that greater SORT1 abundance induced by exogenous fatty acids caused a reduction in VLDL-APOB secretion and increased hepatocyte TAG synthesis. Such mechanism was also apparent in tissue from cows with fatty liver. Thus, targeted downregulation of hepatic SORT1 could represent a viable mechanism to unload lipid during conditions where the influx of fatty acids increases markedly.
KW - SORT1
KW - VLDL secretion
KW - fatty acid
KW - negative energy balance
KW - nonalcoholic fatty liver disease
UR - http://www.scopus.com/inward/record.url?scp=85129794593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129794593&partnerID=8YFLogxK
U2 - 10.3168/jds.2021-21607
DO - 10.3168/jds.2021-21607
M3 - Article
C2 - 35469640
AN - SCOPUS:85129794593
SN - 0022-0302
VL - 105
SP - 5420
EP - 5434
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 6
ER -