Role of microstructure in predicting fatigue performance

Michael D. Sangid, Huseyin Sehitoglu, Hans J. Maier, David U. Furrer, Michael G. Glavicic, Jeffrey Stillinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper a methodology for prediction of fatigue crack initiation based on a representative scan of the material's microstructure is presented. The model utilizes local energy barriers against slip at the atomistic and continuum levels to construct an energy balance for the stability of a persistent slip band, which is a precursor to crack initiation. Scatter in the fatigue results is predicted based on various realizations of the material's measured microstructure and crystallographic texture.

Original languageEnglish (US)
Title of host publication53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781600869372
DOIs
StatePublished - 2012
Event53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012 - Honolulu, HI, United States
Duration: Apr 23 2012Apr 26 2012

Publication series

Name53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012

Conference

Conference53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 2012
Country/TerritoryUnited States
CityHonolulu, HI
Period4/23/124/26/12

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering
  • General Materials Science
  • Surfaces and Interfaces

Fingerprint

Dive into the research topics of 'Role of microstructure in predicting fatigue performance'. Together they form a unique fingerprint.

Cite this