ROLE OF LOW-ENERGY ION/SURFACE INTERACTIONS DURING CRYSTAL GROWTH FROM THE VAPOR PHASE.

J. E. Greene, Angus Rockett, J. E. Sundgren

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Low-energy (often greater than 100 eV) ion bombardment during thin film deposition is commonly used in such diverse application areas as microelectronics, optical coatings, magnetic recording layers, and hard wear resistant coatings to modify the microstructure and microchemistry of films deposited by a variety of techniques (e. g. sputtering, primary ion deposition, plasma-assisted CVD, and accelerated-beam MBE). Ion irradiation has been shown to affect every phase of deposition including nucleation and growth kinetics, crystal structure and phase stability, the average grain size and degree of preferred orientation of polycrystalline films, the epitaxial temperature of single-crystal films, defect concentrations, elemental incorporation probabilities, surface segregation, and, hence, film properties. As discussed in this brief review, a detailed understanding of many of these processes is beginning to emerge. Effects such as trapping, preferential sputtering, enhanced diffusion, and collisional mixing have been used to interpret and, in some cases, model experimental results. Nevertheless, there are still large gaps in our knowledge of the role of ion bombardment on fundamental processes such as nucleation kinetics.

Original languageEnglish (US)
Title of host publicationMaterials Research Society Symposia Proceedings
EditorsMichael O. Thompson, S.Thomas Picraux, James S. Williams
PublisherMaterials Research Soc
Pages59-74
Number of pages16
ISBN (Print)0931837405
StatePublished - 1987
EventBeam-Solid Interact and Transient Processes - Boston, MA, USA
Duration: Dec 1 1986Dec 4 1986

Publication series

NameMaterials Research Society Symposia Proceedings
Volume74
ISSN (Print)0272-9172

Other

OtherBeam-Solid Interact and Transient Processes
CityBoston, MA, USA
Period12/1/8612/4/86

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'ROLE OF LOW-ENERGY ION/SURFACE INTERACTIONS DURING CRYSTAL GROWTH FROM THE VAPOR PHASE.'. Together they form a unique fingerprint.

Cite this