Role of cells in freezing-induced cell-fluid-matrix interactions within engineered tissues

Angela Seawright, Altug Ozcelikkale, Craig Dutton, Bumsoo Han

Research output: Contribution to journalArticlepeer-review

Abstract

During cryopreservation, ice forms in the extracellular space resulting in freezinginduced deformation of the tissue, which can be detrimental to the extracellular matrix (ECM) microstructure. Meanwhile, cells dehydrate through an osmotically driven process as the intracellular water is transported to the extracellular space, increasing the volume of fluid for freezing. Therefore, this study examines the effects of cellular presence on tissue deformation and investigates the significance of intracellular water transport and cell-ECM interactions in freezing-induced cell-fluid-matrix interactions. Freezinginduced deformation characteristics were examined through cell image deformetry (CID) measurements of collagenous engineered tissues embedded with different concentrations of MCF7 breast cancer cells versus microspheres as their osmotically inactive counterparts. Additionally, the development of a biophysical model relates the freezing-induced expansion of the tissue due to the cellular water transport and the extracellular freezing thermodynamics for further verification. The magnitude of the freezing-induced dilatation was found to be not affected by the cellular water transport for the cell concentrations considered; however, the deformation patterns for different cell concentrations were different suggesting that cell-matrix interactions may have an effect. It was, therefore, determined that intracellular water transport during freezing was insignificant at the current experimental cell concentrations; however, it may be significant at concentrations similar to native tissue. Finally, the cell-matrix interactions provided mechanical support on the ECM to minimize the expansion regions in the tissues during freezing.

Original languageEnglish (US)
Article number091001
JournalJournal of Biomechanical Engineering
Volume135
Issue number9
DOIs
StatePublished - 2013

Keywords

  • Cell image deformetry
  • Cellular water transport
  • Cryopreservation
  • Extracellular matrix
  • Freezing-induced deformation
  • Tissue engineering

ASJC Scopus subject areas

  • Biomedical Engineering
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Role of cells in freezing-induced cell-fluid-matrix interactions within engineered tissues'. Together they form a unique fingerprint.

Cite this