TY - GEN
T1 - Robustness Certification for Point Cloud Models
AU - Lorenz, Tobias
AU - Ruoss, Anian
AU - Balunović, Mislav
AU - Singh, Gagandeep
AU - Vechev, Martin
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - The use of deep 3D point cloud models in safety-critical applications, such as autonomous driving, dictates the need to certify the robustness of these models to real-world transformations. This is technically challenging, as it requires a scalable verifier tailored to point cloud models that handles a wide range of semantic 3D transformations. In this work, we address this challenge and introduce 3DCertify, the first verifier able to certify the robustness of point cloud models. 3DCertify is based on two key insights: (i) a generic relaxation based on first-order Taylor approximations, applicable to any differentiable transformation, and (ii) a precise relaxation for global feature pooling, which is more complex than pointwise activations (e.g., ReLU or sigmoid) but commonly employed in point cloud models. We demonstrate the effectiveness of 3DCertify by performing an extensive evaluation on a wide range of 3D transformations (e.g., rotation, twisting) for both classification and part segmentation tasks. For example, we can certify robustness against rotations by ±60° for 95.7% of point clouds, and our max pool relaxation increases certification by up to 15.6%.
AB - The use of deep 3D point cloud models in safety-critical applications, such as autonomous driving, dictates the need to certify the robustness of these models to real-world transformations. This is technically challenging, as it requires a scalable verifier tailored to point cloud models that handles a wide range of semantic 3D transformations. In this work, we address this challenge and introduce 3DCertify, the first verifier able to certify the robustness of point cloud models. 3DCertify is based on two key insights: (i) a generic relaxation based on first-order Taylor approximations, applicable to any differentiable transformation, and (ii) a precise relaxation for global feature pooling, which is more complex than pointwise activations (e.g., ReLU or sigmoid) but commonly employed in point cloud models. We demonstrate the effectiveness of 3DCertify by performing an extensive evaluation on a wide range of 3D transformations (e.g., rotation, twisting) for both classification and part segmentation tasks. For example, we can certify robustness against rotations by ±60° for 95.7% of point clouds, and our max pool relaxation increases certification by up to 15.6%.
UR - http://www.scopus.com/inward/record.url?scp=85114186606&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114186606&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00751
DO - 10.1109/ICCV48922.2021.00751
M3 - Conference contribution
AN - SCOPUS:85114186606
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 7588
EP - 7598
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -