Robustness between the worst and average case

Leslie Rice, Anna Bair, Huan Zhang, J. Zico Kolter

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Several recent works in machine learning have focused on evaluating the test-time robustness of a classifier: how well the classifier performs not just on the target domain it was trained upon, but upon perturbed examples. In these settings, the focus has largely been on two extremes of robustness: the robustness to perturbations drawn at random from within some distribution (i.e., robustness to random perturbations), and the robustness to the worst case perturbation in some set (i.e., adversarial robustness). In this paper, we argue that a sliding scale between these two extremes provides a valuable additional metric by which to gauge robustness. Specifically, we illustrate that each of these two extremes is naturally characterized by a (functional) q-norm over perturbation space, with q = 1 corresponding to robustness to random perturbations and q = 1 corresponding to adversarial perturbations. We then present the main technical contribution of our paper: a method for efficiently estimating the value of these norms by interpreting them as the partition function of a particular distribution, then using path sampling with MCMC methods to estimate this partition function (either traditional Metropolis-Hastings for non-differentiable perturbations, or Hamiltonian Monte Carlo for differentiable perturbations). We show that our approach provides substantially better estimates than simple random sampling of the actual “intermediate-q” robustness of standard, data-augmented, and adversarially-trained classifiers, illustrating a clear tradeoff between classifiers that optimize different metrics. Code for reproducing experiments can be found at https://github.com/locuslab/intermediate_robustness.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages27840-27851
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Externally publishedYes
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume33
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Robustness between the worst and average case'. Together they form a unique fingerprint.

Cite this