TY - GEN
T1 - Robustness between the worst and average case
AU - Rice, Leslie
AU - Bair, Anna
AU - Zhang, Huan
AU - Kolter, J. Zico
N1 - Funding Information:
Acknowledgements Leslie Rice, Anna Bair and Huan Zhang are supported by a grant from the Bosch Center for Artificial Intelligence.
Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Several recent works in machine learning have focused on evaluating the test-time robustness of a classifier: how well the classifier performs not just on the target domain it was trained upon, but upon perturbed examples. In these settings, the focus has largely been on two extremes of robustness: the robustness to perturbations drawn at random from within some distribution (i.e., robustness to random perturbations), and the robustness to the worst case perturbation in some set (i.e., adversarial robustness). In this paper, we argue that a sliding scale between these two extremes provides a valuable additional metric by which to gauge robustness. Specifically, we illustrate that each of these two extremes is naturally characterized by a (functional) q-norm over perturbation space, with q = 1 corresponding to robustness to random perturbations and q = 1 corresponding to adversarial perturbations. We then present the main technical contribution of our paper: a method for efficiently estimating the value of these norms by interpreting them as the partition function of a particular distribution, then using path sampling with MCMC methods to estimate this partition function (either traditional Metropolis-Hastings for non-differentiable perturbations, or Hamiltonian Monte Carlo for differentiable perturbations). We show that our approach provides substantially better estimates than simple random sampling of the actual “intermediate-q” robustness of standard, data-augmented, and adversarially-trained classifiers, illustrating a clear tradeoff between classifiers that optimize different metrics. Code for reproducing experiments can be found at https://github.com/locuslab/intermediate_robustness.
AB - Several recent works in machine learning have focused on evaluating the test-time robustness of a classifier: how well the classifier performs not just on the target domain it was trained upon, but upon perturbed examples. In these settings, the focus has largely been on two extremes of robustness: the robustness to perturbations drawn at random from within some distribution (i.e., robustness to random perturbations), and the robustness to the worst case perturbation in some set (i.e., adversarial robustness). In this paper, we argue that a sliding scale between these two extremes provides a valuable additional metric by which to gauge robustness. Specifically, we illustrate that each of these two extremes is naturally characterized by a (functional) q-norm over perturbation space, with q = 1 corresponding to robustness to random perturbations and q = 1 corresponding to adversarial perturbations. We then present the main technical contribution of our paper: a method for efficiently estimating the value of these norms by interpreting them as the partition function of a particular distribution, then using path sampling with MCMC methods to estimate this partition function (either traditional Metropolis-Hastings for non-differentiable perturbations, or Hamiltonian Monte Carlo for differentiable perturbations). We show that our approach provides substantially better estimates than simple random sampling of the actual “intermediate-q” robustness of standard, data-augmented, and adversarially-trained classifiers, illustrating a clear tradeoff between classifiers that optimize different metrics. Code for reproducing experiments can be found at https://github.com/locuslab/intermediate_robustness.
UR - http://www.scopus.com/inward/record.url?scp=85131880349&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131880349&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85131880349
T3 - Advances in Neural Information Processing Systems
SP - 27840
EP - 27851
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -