Robust visual tracking using oblique random forests

Le Zhang, Jagannadan Varadarajan, Ponnuthurai Nagaratnam Suganthan, Narendra Ahuja, Pierre Moulin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Random forest has emerged as a powerful classification technique with promising results in various vision tasks including image classification, pose estimation and object detection. However, current techniques have shown little improvements in visual tracking as they mostly rely on piece wise orthogonal hyperplanes to create decision nodes and lack a robust incremental learning mechanism that is much needed for online tracking. In this paper, we propose a discriminative tracker based on a novel incremental oblique random forest. Unlike conventional orthogonal decision trees that use a single feature and heuristic measures to obtain a split at each node, we propose to use a more powerful proximal SVM to obtain oblique hyperplanes to capture the geometric structure of the data better. The resulting decision surface is not restricted to be axis aligned, and hence has the ability to represent and classify the input data better. Furthermore, in order to generalize to online tracking scenarios, we derive incremental update steps that enable the hyperplanes in each node to be updated recursively, efficiently and in a closed-form fashion. We demonstrate the effectiveness of our method using two large scale benchmark datasets (OTB-51 and OTB-100) and show that our method gives competitive results on several challenging cases by relying on simple HOG features as well as in combination with more sophisticated deep neural network based models. The implementations of the proposed random forest are available at https://github.com/ZhangLeUestc/Incremental-Oblique-Random-Forest.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5825-5834
Number of pages10
ISBN (Electronic)9781538604571
DOIs
StatePublished - Nov 6 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period7/21/177/26/17

ASJC Scopus subject areas

  • Signal Processing
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Robust visual tracking using oblique random forests'. Together they form a unique fingerprint.

Cite this