Robust Universal Adversarial Perturbations

Changming Xu, Gagandeep Singh

Research output: Contribution to journalConference articlepeer-review

Abstract

Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic vectors that cause deep neural networks (DNNs) to misclassify inputs with high probability. In practical attack scenarios, adversarial perturbations may undergo transformations such as changes in pixel intensity, scaling, etc. before being added to DNN inputs. Existing methods do not create UAPs robust to these real-world transformations, thereby limiting their applicability in practical attack scenarios. In this work, we introduce and formulate UAPs robust against real-world transformations. We build an iterative algorithm using probabilistic robustness bounds and construct UAPs robust to transformations generated by composing arbitrary sub-differentiable transformation functions. We perform an extensive evaluation on the popular CIFAR-10 and ILSVRC 2012 datasets measuring our UAPs' robustness under a wide range common, real-world transformations such as rotation, contrast changes, etc. We further show that by using a set of primitive transformations our method generalizes well to unseen transformations such as fog, JPEG compression, etc. Our results show that our method can generate UAPs up to 23% more robust than state-of-the-art baselines.

Original languageEnglish (US)
Pages (from-to)55241-55266
Number of pages26
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Externally publishedYes
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Robust Universal Adversarial Perturbations'. Together they form a unique fingerprint.

Cite this