ROBUST REINFORCEMENT LEARNING ON STATE OBSERVATIONS WITH LEARNED OPTIMAL ADVERSARY

Huan Zhang, Hongge Chen, Duane Boning, Cho Jui Hsieh

Research output: Contribution to conferencePaperpeer-review

Abstract

We study the robustness of reinforcement learning (RL) with adversarially perturbed state observations, which aligns with the setting of many adversarial attacks to deep reinforcement learning (DRL) and is also important for rolling out real-world RL agent under unpredictable sensing noise. With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found, which is guaranteed to obtain the worst case agent reward. For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones. To enhance the robustness of an agent, we propose a framework of alternating training with learned adversaries (ATLA), which trains an adversary online together with the agent using policy gradient following the optimal adversarial attack framework. Additionally, inspired by the analysis of state-adversarial Markov decision process (SA-MDP), we show that past states and actions (history) can be useful for learning a robust agent, and we empirically find a LSTM based policy can be more robust under adversaries. Empirical evaluations on a few continuous control environments show that ATLA achieves state-of-the-art performance under strong adversaries. Our code is available at https://github.com/huanzhang12/ATLA_robust_RL.

Original languageEnglish (US)
StatePublished - 2021
Externally publishedYes
Event9th International Conference on Learning Representations, ICLR 2021 - Virtual, Online
Duration: May 3 2021May 7 2021

Conference

Conference9th International Conference on Learning Representations, ICLR 2021
CityVirtual, Online
Period5/3/215/7/21

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'ROBUST REINFORCEMENT LEARNING ON STATE OBSERVATIONS WITH LEARNED OPTIMAL ADVERSARY'. Together they form a unique fingerprint.

Cite this