Abstract
The inter-load coupling and the nonlinearities make the control of a multivariable electro-hydraulic system a challenging problem, which has a practical significance in applications such as the earthmoving industry. In previous work, the nonlinear powertrain was locally modeled as an LTI MIMO system and a local LTI MIMO controller was designed at each operating point using an ℋ∞ algorithm. In this paper, to cover the entire operating range of the nonlinear system, a gain-scheduled global controller is designed by scheduling different local controllers on the system flow rate and the power demand. A Local Controller Network scheduling strategy is utilized to simplify the closed-loop robust analysis. Different portions of outputs from different local controllers are combined into the total control by using interpolation-weighting functions. To guarantee the stability and the performance, the robustness of the closed-loop global system is analyzed by modeling the dynamics of the scheduling variables as an uncertainty. The design procedure is presented for a multivariable hydraulic control problem; the achieved stability and performance are demonstrated by both analytical and experimental results.
Original language | English (US) |
---|---|
Pages (from-to) | 4969-4974 |
Number of pages | 6 |
Journal | Proceedings of the American Control Conference |
Volume | 6 |
State | Published - Nov 7 2003 |
Event | 2003 American Control Conference - Denver, CO, United States Duration: Jun 4 2003 → Jun 6 2003 |
ASJC Scopus subject areas
- Electrical and Electronic Engineering