Robust estimation of foreground in surveillance videos by sparse error estimation

Mert Dikmen, Thomas S. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Frames of videos with static background and dynamic foreground can be viewed as samples of signals that vary slowly in time with sparse corruption caused by foreground objects. We cast background subtraction as a signal estimation problem, where the error sparsity is enforced through minimization of the L1 norm of the difference between the processed frame and estimated background subspace, as an approximation to the underlying L 0 norm minimization structure. Our work provides a novel framework for background subtraction with the added benefit of easy integration of local discriminative information (e.g. gradient, texture, motion field etc.) for improved robustness. We show that the proposed method is able to overcome various difficulties frequently encountered in real application settings, and is competitive with the state of the art.

Original languageEnglish (US)
Title of host publication2008 19th International Conference on Pattern Recognition, ICPR 2008
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781424421756
DOIs
StatePublished - 2008
Externally publishedYes

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Robust estimation of foreground in surveillance videos by sparse error estimation'. Together they form a unique fingerprint.

Cite this