@inproceedings{74eadf17ffc14b78853242c8c8429ae1,
title = "Robust DOA estimation of multiple speech sources",
abstract = "It is challenging to determine the directions of arrival of speech signals when there are fewer sensors than sources, particularly in noisy and reverberant environments. The coherence test by Mohan et al. exploits the time-frequency sparseness of non-stationary speech signals to select more relevant time-frequency bins to estimate directions of arrival. With no prior knowledge about the incoming sources, this work proposes a combination of noise-floor tracking, onset detection and a coherence test to robustly identify time-frequency bins where only one source is dominant. After that, the largest eigenvectors of covariance matrices corresponding to these bins are clustered and the directions of arrival of the sources are estimated based on the cluster centroids. Simulation and experimental results show that this method is able to localize 8 sources with small errors using only 3 omnidirectional microphones. The proposed method is robust to background noise and reverberation.",
keywords = "coherence test, direction of arrival estimation, eigenvector, microphone array, time-frequency",
author = "Tho, {Nguyen Thi Ngoc} and Shengkui Zhao and Jones, {Douglas L.}",
year = "2014",
doi = "10.1109/ICASSP.2014.6854007",
language = "English (US)",
isbn = "9781479928927",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "2287--2291",
booktitle = "2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014",
address = "United States",
note = "2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 ; Conference date: 04-05-2014 Through 09-05-2014",
}