TY - JOUR
T1 - Robust deep reinforcement learning against adversarial perturbations on state observations
AU - Zhang, Huan
AU - Chen, Hongge
AU - Xiao, Chaowei
AU - Li, Bo
AU - Liu, Mingyan
AU - Boning, Duane
AU - Hsieh, Cho Jui
N1 - Funding Information:
We acknowledge the support by NSF IIS-1901527, IIS-2008173, ARL-0011469453, and scholarship by IBM. The authors thank Ge Yang and Xiaocheng Tang for helpful discussions.
Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises. Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions. Several works have shown this vulnerability via adversarial attacks, but existing approaches on improving the robustness of DRL under this setting have limited success and lack for theoretical principles. We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, are ineffective for many RL tasks. We propose the state-adversarial Markov decision process (SA-MDP) to study the fundamental properties of this problem, and develop a theoretically principled policy regularization which can be applied to a large family of DRL algorithms, including proximal policy optimization (PPO), deep deterministic policy gradient (DDPG) and deep Q networks (DQN), for both discrete and continuous action control problems. We significantly improve the robustness of PPO, DDPG and DQN agents under a suite of strong white box adversarial attacks, including new attacks of our own. Additionally, we find that a robust policy noticeably improves DRL performance even without an adversary in a number of environments. Our code is available at https://github.com/chenhongge/StateAdvDRL.
AB - A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises. Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions. Several works have shown this vulnerability via adversarial attacks, but existing approaches on improving the robustness of DRL under this setting have limited success and lack for theoretical principles. We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, are ineffective for many RL tasks. We propose the state-adversarial Markov decision process (SA-MDP) to study the fundamental properties of this problem, and develop a theoretically principled policy regularization which can be applied to a large family of DRL algorithms, including proximal policy optimization (PPO), deep deterministic policy gradient (DDPG) and deep Q networks (DQN), for both discrete and continuous action control problems. We significantly improve the robustness of PPO, DDPG and DQN agents under a suite of strong white box adversarial attacks, including new attacks of our own. Additionally, we find that a robust policy noticeably improves DRL performance even without an adversary in a number of environments. Our code is available at https://github.com/chenhongge/StateAdvDRL.
UR - http://www.scopus.com/inward/record.url?scp=85103752024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103752024&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85103752024
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -