TY - GEN
T1 - Robust classification of information networks by consistent graph learning
AU - Zhi, Shi
AU - Han, Jiawei
AU - Gu, Quanquan
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2015.
PY - 2015
Y1 - 2015
N2 - Graph regularization-based methods have achieved great success for network classification by making the label-link consistency assumption, i.e., if two nodes are linked together, they are likely to belong to the same class. However, in a real-world network, there exist links that connect nodes of different classes. These inconsistent links raise a big challenge for graph regularization and deteriorate the classification performance significantly. To address this problem, we propose a novel algorithm, namely Consistent Graph Learning, which is robust to the inconsistent links of a network. In particular, given a network and a small number of labeled nodes, we aim at learning a consistent network with more consistent and fewer inconsistent links than the original network. Since the link information of a network is naturally represented by a set of relation matrices, the learning of a consistent network is reduced to learning consistent relation matrices under some constraints. More specifically, we achieve it by joint graph regularization on the nuclear norm minimization of consistent relation matrices together with ℓ1-norm minimization on the difference matrices between the original relation matrices and the learned consistent ones subject to certain constraints. Experiments on both homogeneous and heterogeneous network datasets show that the proposed method outperforms the state-of-the-art methods.
AB - Graph regularization-based methods have achieved great success for network classification by making the label-link consistency assumption, i.e., if two nodes are linked together, they are likely to belong to the same class. However, in a real-world network, there exist links that connect nodes of different classes. These inconsistent links raise a big challenge for graph regularization and deteriorate the classification performance significantly. To address this problem, we propose a novel algorithm, namely Consistent Graph Learning, which is robust to the inconsistent links of a network. In particular, given a network and a small number of labeled nodes, we aim at learning a consistent network with more consistent and fewer inconsistent links than the original network. Since the link information of a network is naturally represented by a set of relation matrices, the learning of a consistent network is reduced to learning consistent relation matrices under some constraints. More specifically, we achieve it by joint graph regularization on the nuclear norm minimization of consistent relation matrices together with ℓ1-norm minimization on the difference matrices between the original relation matrices and the learned consistent ones subject to certain constraints. Experiments on both homogeneous and heterogeneous network datasets show that the proposed method outperforms the state-of-the-art methods.
KW - Consistent graph learning
KW - Consistent link
KW - Consistent network
KW - Information network
KW - Robust classification
UR - http://www.scopus.com/inward/record.url?scp=84959386989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959386989&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-23525-7_46
DO - 10.1007/978-3-319-23525-7_46
M3 - Conference contribution
C2 - 26705541
AN - SCOPUS:84959386989
SN - 9783319235240
SN - 9783319235240
SN - 9783319235240
SN - 9783319235240
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 752
EP - 767
BT - Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015
A2 - Costa, Vitor Santos
A2 - Soares, Carlos
A2 - Appice, Annalisa
A2 - Appice, Annalisa
A2 - Rodrigues, Pedro Pereira
A2 - Costa, Vitor Santos
A2 - Soares, Carlos
A2 - Gama, João
A2 - Jorge, Alípio
A2 - Rodrigues, Pedro Pereira
A2 - Gama, João
A2 - Costa, Vitor Santos
A2 - Jorge, Alípio
A2 - Appice, Annalisa
A2 - Rodrigues, Pedro Pereira
A2 - Gama, João
A2 - Appice, Annalisa
A2 - Soares, Carlos
A2 - Jorge, Alípio
A2 - Gama, João
A2 - Rodrigues, Pedro Pereira
A2 - Costa, Vitor Santos
A2 - Soares, Carlos
A2 - Jorge, Alípio
PB - Springer
T2 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2015
Y2 - 7 September 2015 through 11 September 2015
ER -