Revisiting Deformable Convolution for Depth Completion

Xinglong Sun, Jean Ponce, Yu Xiong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Depth completion, which aims to generate high-quality dense depth maps from sparse depth maps, has attracted increasing attention in recent years. Previous work usually employs RGB images as guidance, and introduces iterative spatial propagation to refine estimated coarse depth maps. However, most of the propagation refinement methods require several iterations and suffer from a fixed receptive field, which may contain irrelevant and useless information with very sparse input. In this paper, we address these two challenges simultaneously by revisiting the idea of deformable convolution. We propose an effective architecture that leverages deformable kernel convolution as a single-pass refinement module, and empirically demonstrate its superiority. To better understand the function of deformable convolution and exploit it for depth completion, we further systematically investigate a variety of representative strategies. Our study reveals that, different from prior work, deformable convolution needs to be applied on an estimated depth map with a relatively high density for better performance. We evaluate our model on the large-scale KITTI dataset and achieve state-of-the-art level performance in both accuracy and inference speed. Our code is available at https://github.com/AlexSunNiklReDC.

Original languageEnglish (US)
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1300-1306
Number of pages7
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: Oct 1 2023Oct 5 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period10/1/2310/5/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Revisiting Deformable Convolution for Depth Completion'. Together they form a unique fingerprint.

Cite this