TY - JOUR
T1 - Review article
T2 - Global monitoring of snow water equivalent using high-frequency radar remote sensing
AU - Tsang, Leung
AU - Durand, Michael
AU - Derksen, Chris
AU - Barros, Ana P.
AU - Kang, Do Hyuk
AU - Lievens, Hans
AU - Marshall, Hans Peter
AU - Zhu, Jiyue
AU - Johnson, Joel
AU - King, Joshua
AU - Lemmetyinen, Juha
AU - Sandells, Melody
AU - Rutter, Nick
AU - Siqueira, Paul
AU - Nolin, Anne
AU - Osmanoglu, Batu
AU - Vuyovich, Carrie
AU - Kim, Edward
AU - Taylor, Drew
AU - Merkouriadi, Ioanna
AU - Brucker, Ludovic
AU - Navari, Mahdi
AU - Dumont, Marie
AU - Kelly, Richard
AU - Kim, Rhae Sung
AU - Liao, Tien Hao
AU - Borah, Firoz
AU - Xu, Xiaolan
N1 - Publisher Copyright:
© Author(s) 2022.
PY - 2022/9/2
Y1 - 2022/9/2
N2 - Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 ×106 km2 of Earth's surface (31% of the land area) each year, and is thus an important expression and driver of the Earth's climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∼-13% per decade) as Arctic summer sea ice. More than one-sixth of the world's population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth's cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and highsocio- economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band syn-thetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snowcovered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements.
AB - Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 ×106 km2 of Earth's surface (31% of the land area) each year, and is thus an important expression and driver of the Earth's climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∼-13% per decade) as Arctic summer sea ice. More than one-sixth of the world's population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth's cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and highsocio- economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band syn-thetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snowcovered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements.
UR - http://www.scopus.com/inward/record.url?scp=85140389889&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140389889&partnerID=8YFLogxK
U2 - 10.5194/tc-16-3531-2022
DO - 10.5194/tc-16-3531-2022
M3 - Review article
AN - SCOPUS:85140389889
SN - 1994-0416
VL - 16
SP - 3531
EP - 3573
JO - Cryosphere
JF - Cryosphere
IS - 9
ER -