Retrofitting urban land through integrative, subsoils-based planning of green stormwater infrastructure: A research framework

Mary Patricia Mcguire, David A. Grimley, Andrew C. Phillips, Ashlynn S Stillwell, Reshmina William, Jinyu Shen, Margaret Schneemann

Research output: Contribution to journalArticlepeer-review


We present a research framework that integrates native subsoil performance and surface retrofitting into coordinated green stormwater infrastructure (GSI) planning. This framework provides communities a strategy to move beyond opportunistic GSI, which can be limited to capturing marginal amounts of stormwater, toward more impactful, coordinated GSI planning that restores the lost hydrologic functioning of the pre-development landscape. We create this framework by establishing critical performance-based relationships among four variables: (1) saturated hydraulic conductivity of native subsoils (∼upper 2 m below urban compaction and fill); (2) GSI design depth for both rain gardens and permeable pavement (in increments of 6″ from 12-30″ for planted and paved GSI); (3) loading ratio, defined as the ratio of GSI retrofit area to upstream impervious surface runoff area (from 1:2 to 1:5 for planted GSI; and 1:1 and direct infiltration for paved GSI); and (4) design storms (rainfall quantity up to 5-inches over 2 h and 24 h durations). We model the four variables using GSI models (built in the US Environmental Protection Agency’s Storm Water Management Model) and reliability analysis, a risk-assessment method adapted to characterize the reliability of GSI in response to varying stormwater runoff loading. The outcome of the modeling is a set of fragility curves and design prototypes, adjustable to catchment and sub-catchment scales, to assist municipalities in early funding and investment decisions to retrofit urbanized land through GSI. We also share two piloted applications in which we use the research framework within the Chicago-Calumet region in Illinois, USA, to conduct site-specific subsoil sampling and determinations of saturated hydraulic conductivity and to develop urban-scale GSI retrofit scenarios. Our framework is transferable to other urban regions, and particularly useful where a lack of integrating native subsoil performance into GSI design hinders decision-making, coordinated GSI planning at scale, and achieving high runoff reduction targets.

Original languageEnglish (US)
Article number035003
JournalEnvironmental Research: Infrastructure and Sustainability
Issue number3
StatePublished - Dec 1 2021


  • fragility curves
  • green stormwater infrastructure
  • hydraulic conductivity
  • native subsoils
  • reliability analysis
  • retrofitting
  • urban flooding

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Environmental Engineering
  • Geography, Planning and Development


Dive into the research topics of 'Retrofitting urban land through integrative, subsoils-based planning of green stormwater infrastructure: A research framework'. Together they form a unique fingerprint.

Cite this