Abstract
Describing the nature and structure of molecular excited states is important in order to understand their chemical reactivity and role as intermediates in photochemical reactions. The recent implementation of X-ray absorption spectroscopy in the ultrafast time domain allows studying the electronic and structural dynamics of photochemically active molecules in solutions. In this work we present the structural determination of a photoexcited diplatinum molecule, [Pt2(P2O 5H2)4]4-, which plays a photocatalytic role in important chemical conversions. A novel analysis of time-resolved EXAFS spectra based on the fitting of the experimental transients obtained from optical pump/x-ray probe experiments has been performed to derive a contraction of 0.31(5) of the two Pt atoms and a ligand expansion of 0.010(6) . The former is assigned to the formation of a transient Pt-Pt bond in the excited state, while the latter indicates a concomitant weakening of the Pt-ligand coordination bonds.
Original language | English (US) |
---|---|
Article number | 012054 |
Journal | Journal of Physics: Conference Series |
Volume | 190 |
DOIs | |
State | Published - 2009 |
Externally published | Yes |
ASJC Scopus subject areas
- General Physics and Astronomy