TY - GEN
T1 - Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments
AU - Yue, Zhenrui
AU - Zeng, Huimin
AU - Shang, Lanyu
AU - Liu, Yifan
AU - Zhang, Yang
AU - Wang, Dong
N1 - This research is supported in part by the National Science Foundation under Grant No. IIS-2202481, CHE-2105032, IIS-2130263, CNS-2131622, CNS-2140999. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
PY - 2024
Y1 - 2024
N2 - The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and/or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
AB - The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and/or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
UR - http://www.scopus.com/inward/record.url?scp=85204457638&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85204457638&partnerID=8YFLogxK
U2 - 10.18653/v1/2024.acl-long.556
DO - 10.18653/v1/2024.acl-long.556
M3 - Conference contribution
AN - SCOPUS:85204457638
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 10331
EP - 10343
BT - Long Papers
A2 - Ku, Lun-Wei
A2 - Martins, Andre F. T.
A2 - Srikumar, Vivek
PB - Association for Computational Linguistics (ACL)
T2 - 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Y2 - 11 August 2024 through 16 August 2024
ER -