TY - JOUR
T1 - Responses to increasing amounts of high-oleic sunflower fatty acids infused into the abomasum of lactating dairy cows
AU - Drackley, J. K.
AU - Overton, T. R.
AU - Ortiz-Gonzalez, G.
AU - Beaulieu, A. D.
AU - Barbano, D. M.
AU - Lynch, J. M.
AU - Perkinst, E. G.
PY - 2007/11
Y1 - 2007/11
N2 - Increasing the oleic acid (18:1 cis-9) content of milk fat might be desirable to meet consumer concerns about dietary healthfulness and for certain manufacturing applications. The extent to which milk fat could be enriched with oleic acid is not known. Increasing the intestinal supply of polyunsaturated fatty acids decreases dry matter intake (DMI) in cows, but the effects of oleic acid have not been quantified. In a cross-over design, 4 multiparous Holstein cows were abomasally infused with increasing amounts (0, 250, 500, 750, or 1,000 g/d) of free fatty acids from high-oleic sunflower oil (HOSFA) or with carrier alone. Continuous infusions (20 to 22 h/d) were for 7 d at each amount. Infusions were homogenates of HOSFA with 240 g/d of meat solubles and 11.2 g/d of Tween 80; controls received carrier only. The HOSFA contained (by wt) 2.4% 16:0, 1.8% 18:0, 91.4% 18:1 cis-9, and 2.4% 18:2. The DMI decreased linearly (range 22.0 to 5.8 kg/d) as the infused amount of HOSFA increased. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, and energy decreased as the infusion increased to 750 g/d and then increased when 1,000 g/d was infused. Digestibility of total fatty acids increased linearly as infused fatty acids increased. Yields of milk, fat, true protein, casein, and total solids decreased quadratically as infused amounts increased; decreases were greatest when 750 or 1,000 g/d of HOSFA were infused. Concentrations of fat and total solids increased at the higher amounts of HOSFA. The volume mean diameter of milk fat droplets and the diameter below which 90% of the volume of milk fat is contained both increased as HOSFA infusion increased. Concentrations of short-chain fatty acids, 12:0, 14:0, and 16:0 in milk fat decreased linearly as HOSFA increased. The concentration of 18:1 ciss-9 (19.4 to 57.4% of total fatty acids) increased linearly as HOSFA infusion increased. Concentrations of 18:1 cis-9 in blood triglyceride-rich lipoproteins increased linearly as infusion increased, whereas contents of 14:0,16:0,18:0, total 18:1 trans, and 18:2n-6 decreased linearly. The composition and physical characteristics of milk fat can be altered markedly by an increased intestinal supply of 18:1 cis-9, which could influence processing characteristics and the healthfulness of milk fat. However, an increased supply of free 18:1 cis9 to the intestine decreased DMI and milk production.
AB - Increasing the oleic acid (18:1 cis-9) content of milk fat might be desirable to meet consumer concerns about dietary healthfulness and for certain manufacturing applications. The extent to which milk fat could be enriched with oleic acid is not known. Increasing the intestinal supply of polyunsaturated fatty acids decreases dry matter intake (DMI) in cows, but the effects of oleic acid have not been quantified. In a cross-over design, 4 multiparous Holstein cows were abomasally infused with increasing amounts (0, 250, 500, 750, or 1,000 g/d) of free fatty acids from high-oleic sunflower oil (HOSFA) or with carrier alone. Continuous infusions (20 to 22 h/d) were for 7 d at each amount. Infusions were homogenates of HOSFA with 240 g/d of meat solubles and 11.2 g/d of Tween 80; controls received carrier only. The HOSFA contained (by wt) 2.4% 16:0, 1.8% 18:0, 91.4% 18:1 cis-9, and 2.4% 18:2. The DMI decreased linearly (range 22.0 to 5.8 kg/d) as the infused amount of HOSFA increased. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, and energy decreased as the infusion increased to 750 g/d and then increased when 1,000 g/d was infused. Digestibility of total fatty acids increased linearly as infused fatty acids increased. Yields of milk, fat, true protein, casein, and total solids decreased quadratically as infused amounts increased; decreases were greatest when 750 or 1,000 g/d of HOSFA were infused. Concentrations of fat and total solids increased at the higher amounts of HOSFA. The volume mean diameter of milk fat droplets and the diameter below which 90% of the volume of milk fat is contained both increased as HOSFA infusion increased. Concentrations of short-chain fatty acids, 12:0, 14:0, and 16:0 in milk fat decreased linearly as HOSFA increased. The concentration of 18:1 ciss-9 (19.4 to 57.4% of total fatty acids) increased linearly as HOSFA infusion increased. Concentrations of 18:1 cis-9 in blood triglyceride-rich lipoproteins increased linearly as infusion increased, whereas contents of 14:0,16:0,18:0, total 18:1 trans, and 18:2n-6 decreased linearly. The composition and physical characteristics of milk fat can be altered markedly by an increased intestinal supply of 18:1 cis-9, which could influence processing characteristics and the healthfulness of milk fat. However, an increased supply of free 18:1 cis9 to the intestine decreased DMI and milk production.
KW - Fatty acid
KW - Milk fat
KW - Oleic acid
KW - Supplemental fat
UR - http://www.scopus.com/inward/record.url?scp=41449102814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41449102814&partnerID=8YFLogxK
U2 - 10.3168/jds.2007-0122
DO - 10.3168/jds.2007-0122
M3 - Article
C2 - 17954757
AN - SCOPUS:41449102814
SN - 0022-0302
VL - 90
SP - 5165
EP - 5175
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 11
ER -