Abstract
Optical resonance in a semiconductor laser is a major limitation in high speed data communications, resulting in bit error rate degradation and requiring additional power consuming error-correction circuits to counter these effects. In this work, we report the microwave bandwidth measurement of a vertical cavity transistor laser with an oxide-confined aperture of 4.7 × 5.4 μm2 and demonstrate a 3 dB bandwidth of 11 GHz resonance-free optical response via base-current or collector-voltage modulation. The emission spectra exhibit single-mode operation around 970 nm with a narrow linewidth of Δλ ∼ 0.23 Å (cavity Q of 42 216). The resonance-free optical response is explained by the absence of carrier "accumulating" due to the fast base electron-hole recombination lifetimes and a gradient in the minority carrier charge in the transistor active mode.
Original language | English (US) |
---|---|
Article number | 121106 |
Journal | Applied Physics Letters |
Volume | 111 |
Issue number | 12 |
DOIs | |
State | Published - Sep 18 2017 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)