TY - GEN
T1 - Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation
AU - Li, Qi
AU - Li, Yaliang
AU - Gao, Jing
AU - Zhao, Bo
AU - Fan, Wei
AU - Han, Jiawei
PY - 2014
Y1 - 2014
N2 - In many applications, one can obtain descriptions about the same objects or events from a variety of sources. As a result, this will inevitably lead to data or information conflicts. One important problem is to identify the true information (i.e., the truths) among conflicting sources of data. It is intuitive to trust reliable sources more when deriving the truths, but it is usually unknown which one is more reliable a priori. Moreover, each source possesses a variety of properties with different data types. An accurate estimation of source reliability has to be made by modeling multiple properties in a unified model. Existing conflict resolution work either does not conduct source reliability estimation, or models multiple properties separately. In this paper, we propose to resolve conflicts among multiple sources of heterogeneous data types. We model the problem using an optimization framework where truths and source reliability are defined as two sets of unknown variables. The objective is to minimize the overall weighted deviation between the truths and the multi-source observations where each source is weighted by its reliability. Different loss functions can be incorporated into this framework to recognize the characteristics of various data types, and efficient computation approaches are developed. Experiments on real-world weather, stock and flight data as well as simulated multi-source data demonstrate the necessity of jointly modeling different data types in the proposed framework.
AB - In many applications, one can obtain descriptions about the same objects or events from a variety of sources. As a result, this will inevitably lead to data or information conflicts. One important problem is to identify the true information (i.e., the truths) among conflicting sources of data. It is intuitive to trust reliable sources more when deriving the truths, but it is usually unknown which one is more reliable a priori. Moreover, each source possesses a variety of properties with different data types. An accurate estimation of source reliability has to be made by modeling multiple properties in a unified model. Existing conflict resolution work either does not conduct source reliability estimation, or models multiple properties separately. In this paper, we propose to resolve conflicts among multiple sources of heterogeneous data types. We model the problem using an optimization framework where truths and source reliability are defined as two sets of unknown variables. The objective is to minimize the overall weighted deviation between the truths and the multi-source observations where each source is weighted by its reliability. Different loss functions can be incorporated into this framework to recognize the characteristics of various data types, and efficient computation approaches are developed. Experiments on real-world weather, stock and flight data as well as simulated multi-source data demonstrate the necessity of jointly modeling different data types in the proposed framework.
UR - http://www.scopus.com/inward/record.url?scp=84904367424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904367424&partnerID=8YFLogxK
U2 - 10.1145/2588555.2610509
DO - 10.1145/2588555.2610509
M3 - Conference contribution
AN - SCOPUS:84904367424
SN - 9781450323765
T3 - Proceedings of the ACM SIGMOD International Conference on Management of Data
SP - 1187
EP - 1198
BT - SIGMOD 2014 - Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
PB - Association for Computing Machinery
T2 - 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD 2014
Y2 - 22 June 2014 through 27 June 2014
ER -