Abstract
Metabolic resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides is a threat in controlling waterhemp (Amaranthus tuberculatus) in the USA. We investigated resistance mechanisms to syncarpic acid-3 (SA3), a nonselective, noncommercial HPPD-inhibiting herbicide metabolically robust to Phase I oxidation, in multiple-herbicide-resistant (MHR) waterhemp populations (SIR and NEB) and HPPD inhibitor-sensitive populations (ACR and SEN). Dose–response experiments with SA3 provided ED50-based resistant : sensitive ratios of at least 18-fold. Metabolism experiments quantifying parent SA3 remaining in excised leaves during a time course indicated MHR populations displayed faster rates of SA3 metabolism compared to HPPD inhibitor-sensitive populations. SA3 metabolites were identified via LC-MS-based untargeted metabolomics in whole plants. A Phase I metabolite, likely generated by cytochrome P450-mediated alkyl hydroxylation, was detected but was not associated with resistance. A Phase I metabolite consistent with ketone reduction followed by water elimination was detected, creating a putative α,β-unsaturated carbonyl resembling a Michael acceptor site. A Phase II glutathione–SA3 conjugate was associated with resistance. Our results revealed a novel reduction–dehydration–GSH conjugation detoxification mechanism. SA3 metabolism in MHR waterhemp is thus atypical compared to commercial HPPD-inhibiting herbicides. This previously uncharacterized detoxification mechanism presents a unique opportunity for future biorational design by blocking known sites of herbicide metabolism in weeds.
Original language | English (US) |
---|---|
Pages (from-to) | 2089-2105 |
Number of pages | 17 |
Journal | New Phytologist |
Volume | 232 |
Issue number | 5 |
DOIs | |
State | Published - Dec 2021 |
Keywords
- 4-HPPD inhibitor
- cytochrome P450
- detoxification
- glutathione conjugation
- syncarpic acid
- triketones
- untargeted metabolomics
- waterhemp
ASJC Scopus subject areas
- Physiology
- Plant Science