Residual-based Language Models are Free Boosters for Biomedical Imaging Tasks

Zhixin Lai, Jing Wu, Suiyao Chen, Yucheng Zhou, Naira Hovakimyan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, we uncover the unexpected efficacy of residual-based large language models (LLMs) as part of encoders for biomedical imaging tasks, a domain traditionally devoid of language or textual data. The approach diverges from established methodologies by utilizing a frozen transformer block, extracted from pre-trained LLMs, as an innovative encoder layer for the direct processing of visual tokens. This strategy represents a significant departure from the standard multi-modal vision-language frameworks, which typically hinge on language-driven prompts and inputs. We found that these LLMs could boost performance across a spectrum of biomedical imaging applications, including both 2D and 3D visual classification tasks, serving as plug-and-play boosters. More interestingly, as a byproduct, we found that the proposed framework achieved superior performance, setting new state-of-the-art results on extensive, standardized datasets in MedMNIST-2D and 3D. Through this work, we aim to open new avenues for employing LLMs in biomedical imaging and enriching the understanding of their potential in this specialized domain. The code is available at https://github.com/ZhixinLai/LLMBoostMedical

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
PublisherIEEE Computer Society
Pages5086-5096
Number of pages11
ISBN (Electronic)9798350365474
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States
Duration: Jun 16 2024Jun 22 2024

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Country/TerritoryUnited States
CitySeattle
Period6/16/246/22/24

Keywords

  • Biomedical Imaging
  • LLM

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Residual-based Language Models are Free Boosters for Biomedical Imaging Tasks'. Together they form a unique fingerprint.

Cite this