Abstract
Recent focus on light-weight design and fuel efficiency in several sectors (such as aerospace and automotive), as well as advances in polymer technologies, have made plastic parts more viable for high-value systems. These are often low-production, high-precise parts which require expensive tooling for traditional manufacture, making them difficult to reproduce later; this is especially true when the original tooling is no longer available, and full additive manufacturing (AM) is infeasible. This study explores the application of fused deposition modeling (FDM - extrusion-based AM) in the repair of cracks, chips, and broken features in such plastic parts. A framework for repairing various kinds of plastic parts using FDM is presented, including establishment of repair candidacy, selection of repair material and parameters, post-processing, and repair evaluation. Three case studies, one repairing an optimized truss, one exploring the use of sewing-stitch patch patterns, and one replacing a broken part feature, were developed to demonstrate the presented concepts.
Original language | English (US) |
---|---|
Pages | 1732-1755 |
Number of pages | 24 |
State | Published - 2019 |
Event | 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 - Austin, United States Duration: Aug 12 2019 → Aug 14 2019 |
Conference
Conference | 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 |
---|---|
Country/Territory | United States |
City | Austin |
Period | 8/12/19 → 8/14/19 |
Keywords
- Additive manufacturing
- Damage repair
- Fused deposition modeling
- Plastic materials
ASJC Scopus subject areas
- Surfaces, Coatings and Films
- Surfaces and Interfaces