TY - JOUR
T1 - Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications
AU - Wang, Haohan
AU - Wu, Zhenglin
AU - Xing, Eric P.
N1 - Funding Information:
This work is funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. This work is also supported by the National Institutes of Health grants R01-GM093156 and P30- DA035778. The MR brain images from healthy volunteers used in this paper were collected and made available by the CASILab at The University of North Carolina at Chapel Hill and were distributed by the MIDAS Data Server at Kitware, Inc
Funding Information:
The authors would like to thank Mingze Cao and Yin Chen for discussions and creation of Fig 1 and Fig 5. This work is funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. This work is also supported by the National Institutes of Health grants R01-GM093156 and P30-DA035778. The MR brain images from healthy volunteers used in this paper were collected and made available by the CASILab at The University of North Carolina at Chapel Hill and were distributed by the MIDAS Data Server at Kitware, Inc
Publisher Copyright:
© 2018 The Authors.
PY - 2019
Y1 - 2019
N2 - The proliferation of healthcare data has brought the opportunities of applying data-driven approaches, such as machine learning methods, to assist diagnosis. Recently, many deep learning methods have been shown with impressive successes in predicting disease status with raw input data. However, the "black-box" nature of deep learning and the highreliability requirement of biomedical applications have created new challenges regarding the existence of confounding factors. In this paper, with a brief argument that inappropriate handling of confounding factors will lead to models' sub-optimal performance in real-world applications, we present an efficient method that can remove the influences of confounding factors such as age or gender to improve the across-cohort prediction accuracy of neural networks. One distinct advantage of our method is that it only requires minimal changes of the baseline model's architecture so that it can be plugged into most of the existing neural networks. We conduct experiments across CT-scan, MRA, and EEG brain wave with convolutional neural networks and LSTM to verify the efficiency of our method.
AB - The proliferation of healthcare data has brought the opportunities of applying data-driven approaches, such as machine learning methods, to assist diagnosis. Recently, many deep learning methods have been shown with impressive successes in predicting disease status with raw input data. However, the "black-box" nature of deep learning and the highreliability requirement of biomedical applications have created new challenges regarding the existence of confounding factors. In this paper, with a brief argument that inappropriate handling of confounding factors will lead to models' sub-optimal performance in real-world applications, we present an efficient method that can remove the influences of confounding factors such as age or gender to improve the across-cohort prediction accuracy of neural networks. One distinct advantage of our method is that it only requires minimal changes of the baseline model's architecture so that it can be plugged into most of the existing neural networks. We conduct experiments across CT-scan, MRA, and EEG brain wave with convolutional neural networks and LSTM to verify the efficiency of our method.
KW - Confounding factor correction
KW - Healthcare
KW - Neural networks
UR - http://www.scopus.com/inward/record.url?scp=85062764667&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062764667&partnerID=8YFLogxK
M3 - Conference article
C2 - 30864310
AN - SCOPUS:85062764667
SN - 2335-6928
VL - 24
SP - 54
EP - 65
JO - Pacific Symposium on Biocomputing
JF - Pacific Symposium on Biocomputing
IS - 2019
T2 - 24th Pacific Symposium on Biocomputing, PSB 2019
Y2 - 3 January 2019 through 7 January 2019
ER -