Removal of olefinic fat chemical shift artifact in diffusion MRI

D. Hernando, D. C. Karampinos, K. F. King, J. P. Haldar, S. Majumdar, J. G. Georgiadis, Z. P. Liang

Research output: Contribution to journalArticlepeer-review

Abstract

Diffusion-weighted (DW) MRI has emerged as a key tool for assessing the microstructure of tissues in healthy and diseased states. Because of its rapid acquisition speed and insensitivity to motion, single-shot echo-planar imaging is the most common DW imaging technique. However, the presence of fat signal can severely affect DW-echo planar imaging acquisitions because of the chemical shift artifact. Fat suppression is usually achieved through some form of chemical shift-based fat saturation. Such methods effectively suppress the signal originating from aliphatic fat protons, but fail to suppress the signal from olefinic protons. Olefinic fat signal may result in significant distortions in the DW images, which bias the subsequently estimated diffusion parameters. This article introduces a method for removing olefinic fat signal from DW images, based on an echo time-shifted acquisition. The method is developed and analyzed specifically in the context of single-shot DW-echo-planar imaging, where image phase is generally unreliable. The proposed method is tested with phantom and in vivo datasets, and compared with a standard acquisition to demonstrate its performance.

Original languageEnglish (US)
Pages (from-to)692-701
Number of pages10
JournalMagnetic Resonance in Medicine
Volume65
Issue number3
DOIs
StatePublished - Mar 2011
Externally publishedYes

Keywords

  • diffusion
  • EPI
  • olefinic protons
  • water/fat imaging

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Removal of olefinic fat chemical shift artifact in diffusion MRI'. Together they form a unique fingerprint.

Cite this