Relative utility of agronomic, phenological, and morphological traits for assessing genotype-by-environment interaction in maize inbreds

Celeste M. Falcon, Shawn M. Kaeppler, Edgar P. Spalding, Nathan D. Miller, Nicholas Haase, Naser AlKhalifah, Martin Bohn, Edward S. Buckler, Darwin A. Campbell, Ignacio Ciampitti, Lisa Coffey, Jode Edwards, David Ertl, Sherry Flint-Garcia, Michael A. Gore, Christopher Graham, Candice N. Hirsch, James B. Holland, Diego Jarquín, Joseph KnollNick Lauter, Carolyn J. Lawrence-Dill, Elizabeth C. Lee, Aaron Lorenz, Jonathan P. Lynch, Seth C. Murray, Rebecca Nelson, M. Cinta Romay, Torbert Rocheford, Patrick S. Schnable, Brian Scully, Margaret Smith, Nathan Springer, Mitchell R. Tuinstra, Renee Walton, Teclemariam Weldekidan, Randall J. Wisser, Wenwei Xu, Natalia de Leon

Research output: Contribution to journalArticlepeer-review

Abstract

Plant breeders face the challenge of genotype × environment interaction (G × E) in comprehensively breeding for expanded geographic regions. An improved understanding of G × E sensitivity of traits and the environmental features that effectively discriminate among genotypes will enable more efficient breeding efforts. In this study of 31 maize (Zea mays L.) inbreds grown in 36 environments that are part of the Genomes to Fields Initiative, we measured 14 traits, including flowering date, height, and yield components (i.e., ear and kernel dimensions) to (i) identify traits that are the most sensitive indicators of G × E; (ii) determine how geographic location and weather factors influence environments’ discriminability of inbreds; and (iii) detect patterns of stability in better and worse discriminating environments. Genotype × environment interaction explained between 9.0–20.4% of the phenotypic variance with greater effects in the yield-component traits. Discriminability of environments varied by trait. Midwest locations (where 26 of the 31 inbreds were developed) were among the most discriminating environments for more traits, while environments in the West and East tended to be less discriminating. Weather factors during silking were significantly different between the most and least discriminating environments more often than average weather across the season or during the period from planting to silking. Stability of genotypes varied by trait, and performance was usually not correlated with stability. The dissection of complex traits, such as yield into component traits, appears to be a useful approach to understand how environmental factors differentially affect phenotype.

Original languageEnglish (US)
Pages (from-to)62-81
Number of pages20
JournalCrop Science
Volume60
Issue number1
DOIs
StatePublished - Jan 1 2020

ASJC Scopus subject areas

  • Agronomy and Crop Science

Fingerprint Dive into the research topics of 'Relative utility of agronomic, phenological, and morphological traits for assessing genotype-by-environment interaction in maize inbreds'. Together they form a unique fingerprint.

Cite this