TY - JOUR
T1 - Relative performance of different data mining techniques for nitrate concentration and load estimation in different type of watersheds
AU - Li, Shiyang
AU - Bhattarai, Rabin
AU - Cooke, Richard A.
AU - Verma, Siddhartha
AU - Huang, Xiangfeng
AU - Markus, Momcilo
AU - Christianson, Laura
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/8
Y1 - 2020/8
N2 - The increasing availability of water quality datasets has led to a greater focus on hydrologic and water quality analysis, thus requiring more efficient and accurate modelling methods. Data mining techniques have been increasingly used for water quality analysis and prediction of the concentration and load of nitrogen pollutants instead of more traditional simulation methods. In this study, we tested the multilayer perceptron (MLP), k-nearest neighbor (k-NN), random forest, and reduced error pruning tree (REPTree) methods, along with the traditional linear regression, to predict nitrate levels based on long-term data from six watersheds with different land-use practices in the midwestern United States. Both the concentration and load results indicated that REPTree had the best performance, with an R2 of 0.61–0.85 and a relative absolute error of <75.8%. The different watershed types, however, influenced the performance of the data mining methods, where all four methods showed a higher accuracy for urban dominant watershed and lower accuracy for agricultural and forest watersheds. Out of these four methods, classification tree methods (REPTree and RF) performed better than cluster methods (MLP and k-NN) for agricultural and forested watersheds. Our results indicated that both the data structure based on the dominant land use and type of algorithmic method should be carefully considered for selecting a data mining method to predict nitrate concentration and load for a watershed.
AB - The increasing availability of water quality datasets has led to a greater focus on hydrologic and water quality analysis, thus requiring more efficient and accurate modelling methods. Data mining techniques have been increasingly used for water quality analysis and prediction of the concentration and load of nitrogen pollutants instead of more traditional simulation methods. In this study, we tested the multilayer perceptron (MLP), k-nearest neighbor (k-NN), random forest, and reduced error pruning tree (REPTree) methods, along with the traditional linear regression, to predict nitrate levels based on long-term data from six watersheds with different land-use practices in the midwestern United States. Both the concentration and load results indicated that REPTree had the best performance, with an R2 of 0.61–0.85 and a relative absolute error of <75.8%. The different watershed types, however, influenced the performance of the data mining methods, where all four methods showed a higher accuracy for urban dominant watershed and lower accuracy for agricultural and forest watersheds. Out of these four methods, classification tree methods (REPTree and RF) performed better than cluster methods (MLP and k-NN) for agricultural and forested watersheds. Our results indicated that both the data structure based on the dominant land use and type of algorithmic method should be carefully considered for selecting a data mining method to predict nitrate concentration and load for a watershed.
KW - Data mining
KW - Nitrate concentration
KW - Water pollution
KW - Watershed land use
UR - http://www.scopus.com/inward/record.url?scp=85083523708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083523708&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2020.114618
DO - 10.1016/j.envpol.2020.114618
M3 - Article
C2 - 33618470
AN - SCOPUS:85083523708
SN - 0269-7491
VL - 263
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 114618
ER -