Relational DNN Verification With Cross Executional Bound Refinement

Debangshu Banerjee, Gagandeep Singh

Research output: Contribution to journalConference articlepeer-review

Abstract

We focus on verifying relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations (UAP), certified worst-case hamming distance for binary string classifications, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. However, most of the existing works in DNN verification only handle properties defined over single executions and as a result, are imprecise for relational properties. Though few recent works for relational DNN verification, capture linear dependencies between the inputs of multiple executions, they do not leverage dependencies between the outputs of hidden layers producing imprecise results. We develop a scalable relational verifier RACoon that utilizes cross-execution dependencies at all layers of the DNN gaining substantial precision over SOTA baselines on a wide range of datasets, networks, and relational properties.

Original languageEnglish (US)
Pages (from-to)2779-2807
Number of pages29
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Externally publishedYes
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Relational DNN Verification With Cross Executional Bound Refinement'. Together they form a unique fingerprint.

Cite this