Reinforcement Learning in Non-Stationary Discrete-Time Linear-Quadratic Mean-Field Games

Muhammad Aneeq Uz Zaman, Kaiqing Zhang, Erik Miehling, Tamer Basar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we study large population multiagent reinforcement learning (RL) in the context of discretetime linear-quadratic mean-field games (LQ-MFGs). Our setting differs from most existing work on RL for MFGs, in that we consider a non-stationary MFG over an infinite horizon. We propose an actor-critic algorithm to iteratively compute the mean-field equilibrium (MFE) of the LQ-MFG. There are two primary challenges: i) the non-stationarity of the MFG induces a linear-quadratic tracking problem, which requires solving a backwards-in-time (non-causal) equation that cannot be solved by standard (causal) RL algorithms; ii) Many RL algorithms assume that the states are sampled from the stationary distribution of a Markov chain (MC), that is, the chain is already mixed, an assumption that is not satisfied for real data sources. We first identify that the mean-field trajectory follows linear dynamics, allowing the problem to be reformulated as a linear quadratic Gaussian problem. Under this reformulation, we propose an actor-critic algorithm that allows samples to be drawn from an unmixed MC. Finite-sample convergence guarantees for the algorithm are then provided. To characterize the performance of our algorithm in multi-agent RL, we have developed an error bound with respect to the Nash equilibrium of the finite- population game.

Original languageEnglish (US)
Title of host publication2020 59th IEEE Conference on Decision and Control, CDC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2278-2284
Number of pages7
ISBN (Electronic)9781728174471
DOIs
StatePublished - Dec 14 2020
Externally publishedYes
Event59th IEEE Conference on Decision and Control, CDC 2020 - Virtual, Jeju Island, Korea, Republic of
Duration: Dec 14 2020Dec 18 2020

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2020-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference59th IEEE Conference on Decision and Control, CDC 2020
Country/TerritoryKorea, Republic of
CityVirtual, Jeju Island
Period12/14/2012/18/20

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Reinforcement Learning in Non-Stationary Discrete-Time Linear-Quadratic Mean-Field Games'. Together they form a unique fingerprint.

Cite this