Reinforcement Learning in Low-rank MDPs with Density Features

Audrey Huang, Jinglin Chen, Nan Jiang

Research output: Contribution to journalConference articlepeer-review

Abstract

MDPs with low-rank transitions-that is, the transition matrix can be factored into the product of two matrices, left and right-is a highly representative structure that enables tractable learning. The left matrix enables expressive function approximation for value-based learning and has been studied extensively. In this work, we instead investigate sample-efficient learning with density features, i.e., the right matrix, which induce powerful models for state-occupancy distributions. This setting not only sheds light on leveraging unsupervised learning in RL, but also enables plug-in solutions for settings like convex RL. In the offline setting, we propose an algorithm for off-policy estimation of occupancies that can handle non-exploratory data. Using this as a subroutine, we further devise an online algorithm that constructs exploratory data distributions in a level-by-level manner. As a central technical challenge, the additive error of occupancy estimation is incompatible with the multiplicative definition of data coverage. In the absence of strong assumptions like reachability, this incompatibility easily leads to exponential error blow-up, which we overcome via novel technical tools. Our results also readily extend to the representation learning setting, when the density features are unknown and must be learned from an exponentially large candidate set.

Original languageEnglish (US)
Pages (from-to)13710-13752
Number of pages43
JournalProceedings of Machine Learning Research
Volume202
StatePublished - 2023
Externally publishedYes
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: Jul 23 2023Jul 29 2023

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Reinforcement Learning in Low-rank MDPs with Density Features'. Together they form a unique fingerprint.

Cite this