Regulating Phase Separation Behavior of a DEEA-TETA Biphasic Solvent Using Sulfolane for Energy-Saving CO2 Capture

Lidong Wang, Shanshan Liu, Rujie Wang, Qiangwei Li, Shihan Zhang

Research output: Contribution to journalArticle

Abstract

Biphasic solvents containing mixed amines have a phase separation behavior and energy-efficient regeneration for CO2 capture. However, the trade-off between the CO2 absorption capacity and the volume ratio of the CO2-rich phase presents a critical challenge to the reducing potential in regeneration energy consumption. In this study, sulfolane was proposed to regulate the phase separation behavior of a N,N-diethylethanolamine (DEEA)-triethylenetetramine (TETA) biphasic absorbent by simultaneously decreasing the volume ratio and increasing the CO2 loading of the rich phase, without sacrificing the high CO2 capacity. In the DEEA-TETA-sulfolane biphasic absorbent, sulfolane acted as a phase splitter and physical activator. The replacement of a part of H2O by hydrophobic sulfolane contributed to a substantial decrease in the volume ratio of the rich phase from 83 to 39% and an increase in CO2 loading of the rich phase from 3.10 to 4.92 mol/L. The regeneration heat decreased to 1.81 GJ/t CO2, 26.4% less than DEEA-TETA, and 54.6% less than the 5 M monoethanolamine system. Moreover, by promoting the mass transfer coefficient of CO2 in DEEA-TETA-sulfolane to 1.8 times the original DEEA-TETA system, sulfolane was validated as a physical activator. Our study provides a promising strategy for regulating the phase separation behavior of biphasic solvents and enhancing the regeneration energy efficiency for CO2 capture.

Original languageEnglish (US)
Pages (from-to)12873-12881
Number of pages9
JournalEnvironmental Science and Technology
Volume53
Issue number21
DOIs
StatePublished - Nov 5 2019
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Fingerprint Dive into the research topics of 'Regulating Phase Separation Behavior of a DEEA-TETA Biphasic Solvent Using Sulfolane for Energy-Saving CO<sub>2</sub> Capture'. Together they form a unique fingerprint.

  • Cite this