Regularity properties of the cubic nonlinear Schrödinger equation on the half line

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper we study the local and global regularity properties of the cubic nonlinear Schrödinger equation (NLS) on the half line with rough initial data. These properties include local and global wellposedness results, local and global smoothing results and the behavior of higher order Sobolev norms of the solutions. In particular, we prove that the nonlinear part of the cubic NLS on the half line is smoother than the initial data. The gain in regularity coincides with the gain that was observed for the periodic cubic NLS [16] and the cubic NLS on the line [12]. We also prove that in the defocusing case the norm of the solution grows at most polynomially-in-time while in the focusing case it grows exponentially-in-time. As a byproduct of our analysis we provide a different proof of an almost sharp local wellposedness in Hs(R+). Sharp L2 local wellposedness was obtained in [19] and [2]. Our methods simplify some ideas in the wellposedness theory of initial and boundary value problems that were developed in [11,19,20,2].

Original languageEnglish (US)
Pages (from-to)2539-2568
Number of pages30
JournalJournal of Functional Analysis
Volume271
Issue number9
DOIs
StatePublished - Nov 1 2016

Keywords

  • Boundary value problems
  • Nonlinear Schrodinger equations
  • Wellposedness theory

ASJC Scopus subject areas

  • Analysis

Fingerprint Dive into the research topics of 'Regularity properties of the cubic nonlinear Schrödinger equation on the half line'. Together they form a unique fingerprint.

Cite this