@inproceedings{11317f4dd89049febec36a8dae4db6bd,
title = "REFORM: Fast and Adaptive Solution for Subteam Replacement",
abstract = "Subteam Replacement: given a team of people embedded in a social network to complete a certain task, and a subset of members (i.e., subteam) in this team which have become unavailable, find another set of people who can perform the subteam's role in the larger team. We conjecture that a good candidate subteam should have high skill and structural similarity with the replaced subteam while sharing a similar connection with the larger team as a whole. Based on this conjecture, we propose a novel graph kernel which evaluates the goodness of candidate subteams in this holistic way freely adjustable to the need of the situation. To tackle the significant computational difficulties, we equip our kernel with a fast approximation algorithm which (a) employs effective pruning strategies, (b) exploits the similarity between candidate team structures to reduce kernel computations, and (c) features a solid theoretical bound on the quality of the obtained solution. We extensively test our solution on both synthetic and real datasets to demonstrate its effectiveness and efficiency. Our proposed graph kernel outputs more human-agreeable recommendations compared to metrics used in previous work, and our algorithm consistently outperforms alternative choices by finding nearoptimal solutions while scaling linearly with the size of the replaced subteam.",
keywords = "Approximation algorithm, Graph kernels, Graph mining, Team recommendation",
author = "Zhaoheng Li and Xinyu Pi and Mingyuan Wu and Hanghang Tong",
note = "ACKNOWLEGEMENTS This work is supported by NSF (1947135, 2003924 and 1939725).; 2021 IEEE International Conference on Big Data, Big Data 2021 ; Conference date: 15-12-2021 Through 18-12-2021",
year = "2021",
doi = "10.1109/BigData52589.2021.9671359",
language = "English (US)",
series = "Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "350--358",
editor = "Yixin Chen and Heiko Ludwig and Yicheng Tu and Usama Fayyad and Xingquan Zhu and Hu, {Xiaohua Tony} and Suren Byna and Xiong Liu and Jianping Zhang and Shirui Pan and Vagelis Papalexakis and Jianwu Wang and Alfredo Cuzzocrea and Carlos Ordonez",
booktitle = "Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021",
address = "United States",
}