Reed-Muller Subcodes: Machine Learning-Aided Design of Efficient Soft Recursive Decoding

Mohammad Vahid Jamali, Xiyang Liu, Ashok Vardhan Makkuva, Hessam Mahdavifar, Sewoong Oh, Pramod Viswanath

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Reed-Muller (RM) codes are conjectured to achieve the capacity of any binary-input memoryless symmetric (BMS) channel, and are observed to have a comparable performance to that of random codes in terms of scaling laws. On the negative side, RM codes lack efficient decoders with performance close to that of a maximum likelihood decoder for general parameters. Also, they only admit certain discrete sets of rates. In this paper, we focus on subcodes of RM codes with flexible rates that can take any code dimension from 1 to n. where n is the blocklength. We first extend the recursive projection-aggregation (RPA) algorithm proposed recently by Ye and Abbe for decoding RM codes. To lower the complexity of our decoding algorithm, referred to as subRPA, we investigate different ways for pruning the projections. We then derive the soft-decision based version of our algorithm, called soft-subRPA, that is shown to improve upon the performance of subRPA. Furthermore, it enables training a machine learning (ML) model to search for good sets of projections that minimize the decoding error rate. Training our ML model enables achieving very close to the performance of full-projection decoding with a significantly reduced number of projections. For instance, our simulation results on a (64,14) RM subcode show almost identical performance for full-projection decoding and pruned-projection decoding with 15 projections picked via training our ML model. This is equivalent to lowering the complexity by a factor of more than 4 without sacrificing the decoding performance.

Original languageEnglish (US)
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1088-1093
Number of pages6
ISBN (Electronic)9781538682098
DOIs
StatePublished - Jul 12 2021
Externally publishedYes
Event2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australia
Duration: Jul 12 2021Jul 20 2021

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2021-July
ISSN (Print)2157-8095

Conference

Conference2021 IEEE International Symposium on Information Theory, ISIT 2021
Country/TerritoryAustralia
CityVirtual, Melbourne
Period7/12/217/20/21

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Reed-Muller Subcodes: Machine Learning-Aided Design of Efficient Soft Recursive Decoding'. Together they form a unique fingerprint.

Cite this