TY - JOUR
T1 - Reducing hepatic endoplasmic reticulum stress ameliorates the impairment in insulin signaling induced by high levels of β-hydroxybutyrate in bovine hepatocytes
AU - Lei, Lin
AU - Gao, Wenwen
AU - Loor, Juan J.
AU - Aboragah, Ahmad
AU - Fang, Zhiyuan
AU - Du, Xiliang
AU - Zhang, Min
AU - Song, Yuxiang
AU - Liu, Guowen
AU - Li, Xinwei
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Beijing, China; grant nos. 32022084 and 31772810), the Fundamental Research Funds for the Central Universities (Changchun, China), and the Talents Cultivation Program of Jilin University (Jilin, China). None of the authors of this paper have a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.
Publisher Copyright:
© 2021 American Dairy Science Association
PY - 2021/12
Y1 - 2021/12
N2 - Ketotic dairy cows exhibit a state of negative energy balance (NEB) characterized by elevated circulating levels of β-hydroxybutyrate (BHB) and fatty acids. Impaired hepatic insulin signaling in dairy cows occurs frequently during the transition into lactation, but its role on liver function during this period is not well known. In nonruminants, endoplasmic reticulum (ER) stress is a causal factor contributing to impaired insulin signaling in the liver. Thus, the aim of this study was to investigate the status of hepatic insulin and ER stress signaling and whether ER stress contributes to impaired insulin signaling in dairy cows with ketosis. Healthy (control cows, n = 10, BHB ≤0.6 mM) and ketotic (ketotic cows, n = 10, BHB ≥1.2 mM) cows at 3 to 10 d in milk were selected for liver biopsy and blood sampling before feeding. In vitro experiments were conducted with isolated hepatocytes from 5 healthy calves (1 d old, fasted female, 30–40 kg of body weight). Treatments included BHB (0, 0.9, 1.8, 3.6 mM), tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress), and different incubation times (0.5, 1, 2, 3, 5, 7, 9, or 12 h). Ketotic cows had lower daily milk yield (median: 29.50 vs. 23.00 kg), higher plasma nonesterified fatty acid (NEFA) (median: 0.33 vs. 1.17 mM), BHB (median: 0.43 vs. 3.22 mM), aspartate aminotransferase (median: 70.58 vs. 155.70 U/L), alanine aminotransferase (median: 18.31 vs. 37.90 U/L), lower plasma glucose (median: 4.32 vs. 2.37 mg/dL), and revised quantitative insulin sensitivity check index (median: 0.39 vs. 0.37) compared with healthy cows. Increased abundance of phosphorylated insulin receptor substrate-1 (IRS1) and decreased abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in ketotic cows indicated a state of insulin resistance. In addition, abundance of phosphorylated protein kinase RNA-like ER kinase (PERK) and inositol requiring protein-1α (IRE1α), and cleavage of activating transcription factor-6 (ATF6) were greater in the liver of ketotic cows. In vitro, at the early stages of incubation, treatment with BHB upregulated abundance of phosphorylated of IRE1α, PERK, and the cleavage of ATF6, as well as several unfolded protein response genes [X-box-binding protein-1 (XBP1), 78 kDa glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)]. Furthermore, in response to increasing doses of BHB, the phosphorylation level of PERK, IRE1α, and the cleavage of ATF6, and the abundance of XBP1, GRP78, and CHOP increased. In addition, BHB treatment increased phosphorylation of IRS1 and decreased phosphorylation of AKT and GSK3β, and upregulated abundance of gluconeogenic genes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase). Importantly, these changes were reversed by inhibiting ER stress with TUDCA treatment. Overall, the present study indicated that reversing ER stress during ketosis might help alleviate hepatic insulin resistance. Targeting ER stress may represent a potential therapeutic target for controlling the negative aspects of ketosis on liver function.
AB - Ketotic dairy cows exhibit a state of negative energy balance (NEB) characterized by elevated circulating levels of β-hydroxybutyrate (BHB) and fatty acids. Impaired hepatic insulin signaling in dairy cows occurs frequently during the transition into lactation, but its role on liver function during this period is not well known. In nonruminants, endoplasmic reticulum (ER) stress is a causal factor contributing to impaired insulin signaling in the liver. Thus, the aim of this study was to investigate the status of hepatic insulin and ER stress signaling and whether ER stress contributes to impaired insulin signaling in dairy cows with ketosis. Healthy (control cows, n = 10, BHB ≤0.6 mM) and ketotic (ketotic cows, n = 10, BHB ≥1.2 mM) cows at 3 to 10 d in milk were selected for liver biopsy and blood sampling before feeding. In vitro experiments were conducted with isolated hepatocytes from 5 healthy calves (1 d old, fasted female, 30–40 kg of body weight). Treatments included BHB (0, 0.9, 1.8, 3.6 mM), tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress), and different incubation times (0.5, 1, 2, 3, 5, 7, 9, or 12 h). Ketotic cows had lower daily milk yield (median: 29.50 vs. 23.00 kg), higher plasma nonesterified fatty acid (NEFA) (median: 0.33 vs. 1.17 mM), BHB (median: 0.43 vs. 3.22 mM), aspartate aminotransferase (median: 70.58 vs. 155.70 U/L), alanine aminotransferase (median: 18.31 vs. 37.90 U/L), lower plasma glucose (median: 4.32 vs. 2.37 mg/dL), and revised quantitative insulin sensitivity check index (median: 0.39 vs. 0.37) compared with healthy cows. Increased abundance of phosphorylated insulin receptor substrate-1 (IRS1) and decreased abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in ketotic cows indicated a state of insulin resistance. In addition, abundance of phosphorylated protein kinase RNA-like ER kinase (PERK) and inositol requiring protein-1α (IRE1α), and cleavage of activating transcription factor-6 (ATF6) were greater in the liver of ketotic cows. In vitro, at the early stages of incubation, treatment with BHB upregulated abundance of phosphorylated of IRE1α, PERK, and the cleavage of ATF6, as well as several unfolded protein response genes [X-box-binding protein-1 (XBP1), 78 kDa glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)]. Furthermore, in response to increasing doses of BHB, the phosphorylation level of PERK, IRE1α, and the cleavage of ATF6, and the abundance of XBP1, GRP78, and CHOP increased. In addition, BHB treatment increased phosphorylation of IRS1 and decreased phosphorylation of AKT and GSK3β, and upregulated abundance of gluconeogenic genes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase). Importantly, these changes were reversed by inhibiting ER stress with TUDCA treatment. Overall, the present study indicated that reversing ER stress during ketosis might help alleviate hepatic insulin resistance. Targeting ER stress may represent a potential therapeutic target for controlling the negative aspects of ketosis on liver function.
KW - acid
KW - dairy cow
KW - endoplasmic reticulum stress
KW - insulin resistance
KW - ketosis
KW - tauroursodeoxycholic
UR - http://www.scopus.com/inward/record.url?scp=85115034535&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115034535&partnerID=8YFLogxK
U2 - 10.3168/jds.2021-20611
DO - 10.3168/jds.2021-20611
M3 - Article
C2 - 34538494
AN - SCOPUS:85115034535
SN - 0022-0302
VL - 104
SP - 12845
EP - 12858
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 12
ER -