Reduced Order Modeling in TLM

Dzianis Lukashevich, Andreas C Cangellaris, Peter Russer

Research output: Chapter in Book/Report/Conference proceedingConference contribution


The finite-difference time-domain (FDTD) method and the transmission line matrix (TLM) method allow the formulation of state-equation representations of the discretized electromagnetic field. These representations usually involve very large numbers of state variables. Reduced order modeling (ROM) of the investigated structure may yield considerable reduction of the computational effort and can be used to generate compact models of the electromagnetic system. While complexity reduction approaches based on moment matching techniques have been intensively studied in the case of FDTD, they have not yet been considered for TLM. In this paper we apply Krylov subspace methods to TLM using the classical Arnoldi algorithm. It is shown that the inherent unitarity property of the TLM operator nevertheless implies an essential difference in comparison to former implementations for FDTD or circuit analysis. Simulation results for a rectangular cavity resonator using both TLM with and without ROM and a study of the convergence of the eigenvalues are presented here.

Original languageEnglish (US)
Title of host publicationAnnual Review of Progress in Applied Computational Electromagnetics
Number of pages6
StatePublished - 2003
Event19th Annual Review of Progress in Applied Computational Electromagnetics - Monterey, CA, United States
Duration: Mar 24 2003Mar 28 2003


Other19th Annual Review of Progress in Applied Computational Electromagnetics
Country/TerritoryUnited States
CityMonterey, CA


  • Reduced Order Modeling (ROM)
  • Transmission Line Matrix (TLM) Method

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Reduced Order Modeling in TLM'. Together they form a unique fingerprint.

Cite this