Reduced-encoding MRI using higher-order generalized series

Diego Hernando, Justin Haldar, Zhi Pei Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Reduced-encoding MRI has been used in a wide variety of MR applications where temporal resolution is critical. Although the Generalized Series model (with basis functions constructed from a reference image) allows the reconstruction of high-resolution dynamic images from a small number of encodings, the ability of the model to capture localized dynamic features is limited by the model order, which in the past has been set equal to the number of encodings acquired. This paper extends this model by incorporating higher frequency terms, which allows for a sharper reconstruction of new localized features. Since the series coefficients of the higher-order model are underdetermined by the data collected, two important issues arise which are addressed in this paper: the definition of an appropriate regularization criterion and the solution of the corresponding optimization problem. Results from simulated as well as biological data are also provided to demonstrate the properties of this model.

Original languageEnglish (US)
Title of host publication2006 3rd IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro - Proceedings
Pages29-32
Number of pages4
StatePublished - 2006
Event2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Arlington, VA, United States
Duration: Apr 6 2006Apr 9 2006

Publication series

Name2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
Volume2006

Other

Other2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Country/TerritoryUnited States
CityArlington, VA
Period4/6/064/9/06

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Reduced-encoding MRI using higher-order generalized series'. Together they form a unique fingerprint.

Cite this