Recycling pulsars to millisecond periods in general relativity

Gregory B. Cook, Stuart L. Shapiro, Saul A. Teukolsky

Research output: Contribution to journalArticlepeer-review

Abstract

We use models of rapidly rotating neutron stars in general relativity to construct evolutionary tracks for the recycling of pulsars to millisecond periods. We give an exact treatment for a simple recycling scenario where accretion occurs from the inner edge of a Keplerian disk onto a bare neutron star. For this scenario we tabulate the shortest achievable period and corresponding accreted rest mass for 13 nuclear equations of state. For each equation of state, we determine whether a nonrotating 1.4 M star can be spun up to millisecond periods without exceeding the maximum mass or rotation limits. We find that spin-up is possible for all of the equations of state, even those with a static maximum mass close to 1.4 M.

Original languageEnglish (US)
Pages (from-to)L117-L120
JournalAstrophysical Journal
Volume423
Issue number2 PART 2
DOIs
StatePublished - Mar 10 1994
Externally publishedYes

Keywords

  • Accretion, accretion disks
  • Pulsars: general
  • Relativity
  • Stars: neutron

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Recycling pulsars to millisecond periods in general relativity'. Together they form a unique fingerprint.

Cite this