Recommending encounters according to the sociodemographic characteristics of patient strata can reduce risks from type 2 diabetes

Han Ye, Ujjal Kumar Mukherjee, Dilip Chhajed, Jason Hirsbrunner, Collin Roloff

Research output: Contribution to journalArticlepeer-review


Objectives Physician encounters with patients with type 2 diabetes act as motivation for self-management and lifestyle adjustments that are indispensable for diabetes treatment. We elucidate the sociodemographic sources of variation in encounter usage and the impact of encounter usage on glucose control, which can be used to recommend encounter usage for different sociodemographic strata of patients to reduce risks from Type 2 diabetes. Data and methods We analyzed data from a multi-facility clinic in the Midwestern United States on 2124 patients with type 2 diabetes, from 95 ZIP codes. A zero-inflated Poisson model was used to estimate the effects of various ZIP-code level sociodemographic variables on the encounter usage. A multinomial logistic regression model was built to estimate the effects of physical and telephonic encounters on patients' glucose level transitions. Results from the two models were combined in marginal effect analyses. Results and conclusions Conditional on patients' clinical status, demographics, and insurance status, significant inequality in patient encounters exists across ZIP codes with varying sociodemographic characteristics. One additional physical encounter in a six-month period marginally increases the probability of transition from a diabetic state to a pre-diabetic state by 4.3% and from pre-diabetic to the non-diabetic state by 3.2%. Combined marginal effect analyses illustrate that a ZIP code in the lower quartile of high school graduate percentage among all ZIP codes has 1 fewer physical encounter per six months marginally compared to a ZIP code at the upper quartile, which gives 5.4% average increase in the probability of transitioning from pre-diabetic to diabetic. Our results suggest that policymakers can target particular patient groups who may have inadequate encounters to engage in diabetes care, based on their immediate environmental sociodemographic characteristics, and design programs to increase their encounters to achieve better care outcomes.

Original languageEnglish (US)
Article numbere0249084
JournalPloS one
Issue number4 April
StatePublished - Apr 2021

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Recommending encounters according to the sociodemographic characteristics of patient strata can reduce risks from type 2 diabetes'. Together they form a unique fingerprint.

Cite this