TY - GEN
T1 - Recent progress on SPECT imaging with near-field coded aperture collimation
T2 - 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010
AU - Mu, Zhiping
AU - Dobrucki, Wawrzyniec L.
AU - Hu, Xiaoyue
AU - Liu, Yi Hwa
PY - 2010/12/1
Y1 - 2010/12/1
N2 - A small animal study of three-dimensional (3-D) single photon emission computerized tomography (SPECT) imaging with near-field coded aperture collimation is reported. In our early effort to develop high-sensitivity and high-resolution SPECT technology, we introduced an imaging protocol and a reconstruction method for 3-D near-field coded aperture SPECT, and obtained good SPECT reconstructions of 3-D objects, including a micro hot-rod phantom with complex structures. In this study, we aim to reconstruct low contrast and slow-varying radioactivity distribution in an ex vivo rat heart, in contrast to point-like distributions such as that in the micro hot-rod phantom that we previously reported. In our new experiment, the rat underwent an open-chest surgery and its left anterior descending coronary artery was ligated to induce permanent myocardial infarction in the left ventricular (LV) myocardium. After the surgical procedures the rat was injected with 6.29 mCi of 99mTc-Tetrofosmin via the jugular vein. One hour post the radiotracer injection, the rat was sacrificed and the LV was dissected from the heart. Dental alginate paste was subsequently injected into the LV to sustain its shape for imaging. Coded aperture projections with a magnification factor of 2.6 were acquired from 64 evenly distributed angles over a 360 degree camera rotation on a micro-SPECT system equipped with NaI detectors. Images of cross-sectional slices were successfully reconstructed using our four-step reconstruction algorithm, and special care was taken to account for the wide projection angle in the small animal imaging system. In the reconstructed images, the donut-shape of the LV was well visualized, and the surgically induced infarct, resulting in myocardial perfusion defect in the apical anterior regions of the LV, could be clearly identified, further demonstrating the feasibility of the near-field coded aperture SPECT imaging methods we proposed.
AB - A small animal study of three-dimensional (3-D) single photon emission computerized tomography (SPECT) imaging with near-field coded aperture collimation is reported. In our early effort to develop high-sensitivity and high-resolution SPECT technology, we introduced an imaging protocol and a reconstruction method for 3-D near-field coded aperture SPECT, and obtained good SPECT reconstructions of 3-D objects, including a micro hot-rod phantom with complex structures. In this study, we aim to reconstruct low contrast and slow-varying radioactivity distribution in an ex vivo rat heart, in contrast to point-like distributions such as that in the micro hot-rod phantom that we previously reported. In our new experiment, the rat underwent an open-chest surgery and its left anterior descending coronary artery was ligated to induce permanent myocardial infarction in the left ventricular (LV) myocardium. After the surgical procedures the rat was injected with 6.29 mCi of 99mTc-Tetrofosmin via the jugular vein. One hour post the radiotracer injection, the rat was sacrificed and the LV was dissected from the heart. Dental alginate paste was subsequently injected into the LV to sustain its shape for imaging. Coded aperture projections with a magnification factor of 2.6 were acquired from 64 evenly distributed angles over a 360 degree camera rotation on a micro-SPECT system equipped with NaI detectors. Images of cross-sectional slices were successfully reconstructed using our four-step reconstruction algorithm, and special care was taken to account for the wide projection angle in the small animal imaging system. In the reconstructed images, the donut-shape of the LV was well visualized, and the surgically induced infarct, resulting in myocardial perfusion defect in the apical anterior regions of the LV, could be clearly identified, further demonstrating the feasibility of the near-field coded aperture SPECT imaging methods we proposed.
UR - http://www.scopus.com/inward/record.url?scp=79960298572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960298572&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2010.5874447
DO - 10.1109/NSSMIC.2010.5874447
M3 - Conference contribution
AN - SCOPUS:79960298572
SN - 9781424491063
T3 - IEEE Nuclear Science Symposium Conference Record
SP - 3450
EP - 3453
BT - IEEE Nuclear Science Symposuim and Medical Imaging Conference, NSS/MIC 2010
Y2 - 30 October 2010 through 6 November 2010
ER -