Realizing infrared power-law liquids in the cuprates from unparticle interactions

Kridsanaphong Limtragool, Chandan Setty, Zhidong Leong, Philip W. Phillips

Research output: Contribution to journalArticlepeer-review

Abstract

Recent photoemission experiments [1] reveal that the excitations along the nodal region in the strange metal phase of the cuprates, rather than corresponding to poles in the single-particle Green function, exhibit power-law scaling as a function of frequency and temperature. Because such power-law scaling is indicative of a scale-invariant sector, as a first step, we perturbatively evaluate the electron self-energy due to interactions with scale-invariant unparticles. We focus on a G0W-type diagram with an interaction W mediated by a bosonic scalar unparticle. We find that in the high-temperature limit, the imaginary part of the self-energy ImΣ is linear in temperature. In the low-temperature limit, ImΣ exhibits the same power law in both temperature and frequency, with an exponent that depends on the scaling dimension of an unparticle operator. Such behavior is qualitatively consistent with the experimental observations. We then expand the unparticle propagator into coherent and incoherent contributions and study how the incoherent part violates the density of states (DOS) and density-density correlation function sum rules (f-sum rule). Such violations, in principle, can be observed experimentally. Our work indicates that the physical mechanism for the origin of the power-law scaling is the incoherent background, which is generated from the Mott-scale physics.

Original languageEnglish (US)
Article number235121
JournalPhysical Review B
Issue number23
DOIs
StatePublished - Dec 8 2016

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Realizing infrared power-law liquids in the cuprates from unparticle interactions'. Together they form a unique fingerprint.

Cite this